



Review of Graphene Oxide for anti-bacterial and anti-viral functions

Maryam Modarres Abalonyx AS, Forskningsveien 1, 0373 Oslo, Norway

## Introduction

The recent Covid-19 pandemic as a global health crisis has triggered intense R&D to find vaccines, detection methods and personal protection. Research groups around the world are now focusing on providing products to confront COVID-19. Graphene based materials such as graphene oxide (GO) have been identified as a promising candidate in biomedical applications due to their unique properties such as biocompatibility, hydrophilicity, high surface area, dispersity as well as antibacterial/antiviral properties [1,2]. The interaction mechanism between graphene oxide and various pathogen leads to inhibit the bacterial and viral growth. Graphene oxide has high potential to help in the war on Covid-19 virus, by novel and cost-effective technologies with high efficiency being prepared for virus prevention. Recently, graphene oxide nanocomposites have also been used for anti-bacterial coatings [3], sensors [4], and other biomedical [5]. Antibacterial and antiviral coating with graphene oxide nanocomposites have great potential in health care to control microbial and viral infection. The combination of nanoparticles such as silver, titanium dioxide and magnetite nanoparticles with graphene oxide can be considered for personal protection equipment to decrease the transmission of viruses increases effective, increases surface area and prevent from the aggregation of graphene oxide nanosheets [6]. Graphene oxide nanocomposites can be used as face mask filter due to remarkable antibacterial/ antiviral properties for health protection. The biomedical application of graphene oxide nanocomposites is schematically illustrated in Fig. 1.

The development of graphene-based antibacterial materials to face current challenges to combat against the bacterial targets has been investigated. Antibacterial properties of graphenebased materials is illustrated in Table1 that combine the antibacterial properties of nanoparticles with the antibacterial property of graphene to achieve the enhanced effect [3].

Table 1. Antibacterial properties of graphene-based materials.

| Graphene Materials | Bacteria Model  | Evaluation Method | Inhibition |
|--------------------|-----------------|-------------------|------------|
|                    | Graphene family |                   |            |



| GO                                     | S. aureus/P.<br>aeruginosa                     | ADA         | 93.7/48%  |  |
|----------------------------------------|------------------------------------------------|-------------|-----------|--|
| GO                                     | P. aeruginosa                                  | Plate count | 100%      |  |
| rGO                                    | E. coli                                        | Plate count | 88%       |  |
|                                        | Functionalized with Silver NPs                 |             |           |  |
| GO-AgNPs                               | E. coli/S. aureus                              | Plate count | 100%      |  |
| GO-Ag <sub>3</sub> PO <sub>4</sub> NPs | E. coli/S. aureus                              | Plate count | 92.8/100% |  |
| rGO-AgNPs                              | gNPs E. coli Plate                             |             | 100%      |  |
|                                        | Photocatalytic Functionalization               |             |           |  |
| rGO-TiO <sub>2</sub>                   | E. coli/S. Aureus                              | ADA         | N/A       |  |
| rGO-ZnO                                | E. coli                                        | Plate count | 100%      |  |
| GO-ZnO                                 | E. coli                                        | Plate count | 100%      |  |
| GO-CdS                                 | E. coli/B. subtilis                            | Plate count | 100%      |  |
|                                        | Functionalization with Other Metal Ions/Oxides |             |           |  |
| rGO-Cu <sub>2</sub> O                  | E. coli/S. aureus                              | Plate count | 70/65%    |  |
| GO-Fe <sub>3</sub> O <sub>4</sub>      | E. coli                                        | Plate count | 91.5%     |  |
| GO-Fe <sub>2</sub> O <sub>3</sub>      | E. coli                                        | Plate count | 97%       |  |
|                                        |                                                |             |           |  |

GO/Ag nanocomposites can be considered for personal protection equipment to decrease the transmission of viruses. Fig. 2 shows anti-viral properties of Ag nanoparticle decorated graphene matrices [5].

Graphene oxide/Ag NPs (GO-Ag)

| GO/Silver nanocomposites | Anti-bacterial/Anti viral | GO/Cu2O nanocomposites |
|--------------------------|---------------------------|------------------------|
|                          | Drug delivery             |                        |
|                          | Bioimaging                |                        |
|                          | Sensors                   |                        |

Figure 1. Schematic of applications of graphene oxide nanocomposites for anti-bacterial /anti-viral

Graphene-based material has contributed to the fabrication of sensitive sensors and biosensors due to its physical and electrochemical properties. Table 2 indicates graphene-based sensors performance for the detection of toxic gases [4]

Table 2. Graphene-based sensors performance for the detection of toxic gases [4].

| Material                         | Target Gas          | Sensitivity             | LOD     | Response Time | Year |
|----------------------------------|---------------------|-------------------------|---------|---------------|------|
| rGO-ZnO                          | NO <sub>2</sub>     | $\Delta R/R_0 = 25.6\%$ | 5 ppm   | 165 s         | 2014 |
| CuO-ZnO/rGO                      | acetone             | $R_g/R_a = 1.5$         | 10 ppm  |               | 2014 |
| Ni-doped<br>SnO <sub>2</sub> /GO | acetone             | $\Delta G/G_0 = 27.5\%$ | 200 ppm | 5.4 s         | 2015 |
|                                  | ethanol             | $R_a/R_t = 160$         |         |               |      |
| GO-SnO <sub>2</sub>              | acetone             | $R_a/R_t = 200$         | 200 ppm | -             | 2017 |
| -                                | formaldehyde        | $R_a/R_t = 91$          | -       |               |      |
| AgNPs-rGO                        | _                   | $\Delta R/R_0 = 6.52\%$ | -       | 70 s          |      |
| PtNPs-rGO                        | NH <sub>3</sub>     | $\Delta R/R_0 = 2.87\%$ | 1 ppm   | 80 s          | 2017 |
| AuNPs-rGO                        |                     | $\Delta R/R_0 = 0.5\%$  | -       | 100 s         |      |
| ZnO NW-rGO                       | NH <sub>3</sub>     | $\Delta R/R_0 = 19.2\%$ | 50 ppm  | 100 s         | 2017 |
| ZnO-rGO                          | chloroform<br>vapor | $\Delta R/R_0 = 1.75\%$ | 20 ppm  | 10 s          | 2017 |
| TiO <sub>2</sub> -rGO            | NH <sub>3</sub>     | $\Delta R/R_0 = 1.7$    | 10 ppm  | 114 s         | 2017 |
|                                  |                     |                         |         |               |      |





Figure 2. Anti-viral properties of Ag nanoparticle decorated graphene matrices [5].

## CONTACT PERSON

## Maryam Modarres

Abalonyx AS, Forskningsveien 1, 0373 Oslo, Norway mm@abalonyx.no www.Abalonyx.no

## REFERENCES

[1] H. E. Karahan, C. Wiraja, C. Xu, J. Wei, Y. Wang, L. Wang, Y. Chen, Adv. Healthcare Mater., 2018, 7(13), 1701406.
[2] A.T, Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, J. Nanomater, 2019, 1(1),31-47.
[3] C.H. Deng, J.L. Gong, G.M. Zeng, C.G. Niu, Q.Y. Niu, W. Zhang, H.Y. Liu, J. Hazardous Mater. 2014, 276, 66–76.
[4] L. Yu, H. Wu, B. Wu, Z. Wang, H. Cao, C. Fu, N. Jia, Nano-Micro Letters, 2014, 6(3), 258-267.
[5] S. Bandi, V. Hastak, C.L. Pavithra, S. Kashyap, D.K. Singh, S. Luqman, A.K. Srivastav, J.Mater. Res, 2019, 34(20), 3389-3399.
[6] P. Kumar, P. Huo, R. Zhang, B. Liu, J. Nanomater., 2019, 9 (5), 737.

