

P. Mariani¹, L.Najafi^{2,3}, S.Bellani^{2,3}, M.I. Zappia^{3,4}, G.Bianca², N.Yaghoobi Nia¹, S.Pescetelli¹, A. Agresti¹, F. Bonaccorso^{2,3} and Aldo Di Carlo^{1,5}

¹ Department of Electronic Engineering, University of Rome "Tor Vergata", via del Politecnico 1 00133 Rome – ITALY / CHOSE- Centre for Hybrid and Organic Solar Energy, Viale Pietro Gismondi snc 00133 Roma- ITALY ² Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy

³ BeDimensional Spa., Via Albisola 121, 16163 Genova, Italy

⁴ Department of Physics, University of Calabria, via P. Bucci cubo 31/C, 87036 Rende, Cosenza, Italy

⁵ Istituto di Struttura della Materia, CNR-ISM, via Fosso del Cavaliere 100, 00133 Roma, Italy

INTRODUCTION

Gold films are typically used as the back electrode of the most efficient certified perovskite solar cells (PSCs)[1], arising severe concerns for their future industrialization. In fact, on one hand, both gold cost and deposition through energy-consuming vacuum evaporation negatively affect the levelized cost of energy (LCOE) of the mesoscopic PSC technology. On the other hand, gold ion migration toward either the hole-transporting layer (HTL) or the perovskite film causes severe instability effects under operating conditions, decreasing the PSC lifetime[2]. In this work, we show a very simple way to replace the gold of PSC back electrode with nanocarbon films based on graphene flakes without altering the underlying structure of the traditional mesoscopic. Our lowtemperature graphene-based pastes are currently implemented in advanced mesoscopic PSCs[3,4] and perovskite solar modules (PSMs)[5] including graphene-doped TiO₂ ETL and 2D transition metal dichalcogenides interlayer[6] to overcome the "gold" PCE and reach the state-of-the-art performance through viable large-scale manufacturing processes.

THICKNESS AND SHEET RESISTANCE

We determined both the thickness (μm) and the sheet resistance (Ω/sq) of the deposited graphene-based ECA. The sheet resistance decreases with increasing the thickness.

-•- THICKNESS

- **EFFICIENCY**

--- FILL FACTOR

LAYERS	THICKNESS (μm)	SHEET RESISTANCE (Ω/sq)
1	15 ± 3	73
2	40 ± 5	11
3	90 ± 10	9
5	50 ± 10	

GRAPHENE-BASED ECA - 1 LAYER GRAPHENE-BASED ECA - 2 LAYER density (mA/cm²) 10 2 0 2 2 -•- GOLD ACTIVE AREA = 1 cm^2 **Current** -15 -15 0.2 0.4 0.6 0.8 1.0 -0.2 0.0 12

OPTIMIZATION OF THICKNESS

optimization of The the thickness of the spin-coated graphene-based ECA increases the photovoltaic performance of our PSCs by 30%.

•		· · —				
	Voltage (V)				+ 30%	
	Counter Electrode	V _{oc} (V)	J _{sc} (mA/cm²)	FF (%)		PCE (%)
	GRAPHENE-BASED ECA - 1 LAYER	0.98	-19.4	40.5	/ \	7.7
(GRAPHENE-BASED ECA- 2 LAYERS	0.99	-19.7	55.6	5	11.0

BLADE COATING TECHNIQUE

Blade coating technique has been established for he upscaling of the PSC technology [7]. The deposition of graphene-based ECA through blade coating paves the way towards PSC the large-scale manufacturing, while avoiding material waste occurring using other

- \checkmark Optimized graphene-based ECAs shows a sheet resistance < 10 Ω/sq for thickness > 40 μ m.
- ✓ Graphene-based ECAs deposited by blade coating enable efficient large-area PSCs.

e. -20 -25 -0	••• -•-Com -•-Spiro ,20,0	o o o o o o o o o o o o o o o o o o o	nized) 1,2	depositions techn such as spin-coatir			
	PASTE			J _{sc} (mA/cm²)	FF (%)	PCE (%)	
		Commercial carbon paste (optimized)	1.00	-17.3	45.6	8.0	
		Graphene-based ECA (not yet optimized)	0.90	-19.4	46.0	8.0	

CONTACT PERSON		[1] Green, M.A. et al. Prog Photovolt Res Appl. 2020, 28,3–15.	
		[2] Domanski, K. et al. ACS Nano 2016, 10, 6306–6314.	
Paolo Mariani	REFERENCES	[3] Taheri B. et al. <i>2D Materials 2018, 5, 4.</i>	ranhene Industrial For
		[4] Lamanna E. at al. <i>Joule 2020, 4, 865–881.</i>	
		[5] Agresti, A. et al. <i>ACS Energy Lett. 2019, 4, 1862–1871.</i>	
paolo.mariani@uniroma2.it		[6] Najafi L. et al. <i>ACS Nano 2018, 12, 10736–10754.</i>	
		[7] Park N., Zhu K. <i>Nat Rev Mater 2020, 5, 333–350.</i>	