

A bio-inspired fractal designed breath sensors fabricated by graphene inks using extrusion 3D printing

Kamrul Hassan^{1,2}, Tran Thanh Tung^{1,2}, Nathan Stanley^{1,2}, Dusan Losic^{1,2*}

¹School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia ²ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia

INTRODUCTION

Despite a developing number of diagnostic devices in recent years, there are

still significant demand for low-cost, fast and simple devices for personalized diagnostic for detection of most concerning human diseases such as cancer, respiratory syndromes, diabetes, obesity, asthma etc. Breath analysis could play a significant role in this by providing non-invasive and on-demand human health data collected from abnormal biomarkers patterns from breath samples [1,2] As a result, breath sensors can revolutionize medical diagnostics by monitoring and on-demand detection of health parameters in a personalized manner for many diseases.

The goals of this work is to demonstrate the performance of extrusion 3D printed chemo-resistive patterned electrode inspired by the 'fern leaf' design with higher surface area to volume (SA/V) ratio for enhanced VOC detection where specially designed graphene ink is used.

Methanol Ethanol Ethanol Acetone 200 300 Time (sec)

RESEARCH GAPS

- Metal-based inks have limitations and needs the replacement.
- Graphene inks are solution but not developed yet for extrusion process.
- Non-invasive biomedical diagnostics telehealth monitoring devices are required.

AIMS

3D extrusion printing

METHODOLOGY

- Inks are formulated using exfoliated graphene (pG), cyrene and ethyl-cellulose (EC).
- Fractal designed micro-pattern was direct 3Dextrusion printed on PET substrate.
- Fabricated structure were characterized by SEM, **Profilometer, Raman, FTIR, XRD.**
- Breath sensor was fabricated and tested on

To develop fractal designed breath sensor by graphene ink using 3D extrusion printing and demonstrate its sensing performances.

RESULTS AND DISCUSSIONS

Fig. 1: FESEM images of (a) pristine graphene (pG), (b) pristine graphene/ethyl-cellulose (pG/EC) black powder, and (c) cyrene based graphene ink.

Printed Sensing device

EtOH, MeOH, and acetone at room temperature.

Graphene inks

Fig. Relative humidity effect to 4: saturated ethanol at RT.

CONCLUSIONS AND PERSPECTIVES

Extrusion printing of micro patterns followed the design of natural fern leaf "Hilbert" on PET substrates with excellent reproducibility is demonstrated Hilbert designed fabricated sensor have enhanced SA/V ratio (10 times) than planar/non-fractal design.

- The sensor exhibits enhanced performance with a high level of tuneable selectivity, fast response-recovery time (6/36 sec), as well as wide detection range (5-100 ppm) for ethanol at room temperature.
- This concept has the potential to make a beneficial contribution towards the development of low-cost, high-performing VOC sensors to monitor human health through * metabolic breath testing.

