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• Graphene in ultrafast photonics

Graphene consists of a single layer of carbon atoms arranged in

an hexagonal lattice and is a very promising material in

photonics, mainly due to its extremely high and broadband

nonlinear optical susceptibility1,2 and the possibility of occurrence

of interband transitions at all optical frequencies. It allows

broadband ultrafast third-harmonic generation (THG), enabling

not only to characterize the used ultrashort pulses3 but also to

study the dynamics of the charge carriers in graphene. The

possibility of obtaining an enhanced nonlinear signal and

increased damage threshold in multi-layer2 and functionalized

graphene coatings are two key points in this work.
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• Energy per pulse:

~1,25 nJ

• Pulse duration:  

sub-10 fs

• Experimental setup

• Functionalization
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• In average, “multi-islands” have a higher 

coverage of domains with varying number 

of layers, and therefore are less uniform 

compared to “few-islands” graphene.

• Signal increases with number of layers

• Similar THG spectrum for all samples, 

except for 1-layer few-islands (signal 

comparable to substrate – 1mm thick 

fused silica)

• Extremely broadband THG, from 240-300 

nm (~25 nm FWHM)

•THG in functionalized graphene
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•THG d-scan in functionalized graphene

•Durability of functionalized graphene
5 layer few-islands 
graphene is more 

resilient to 
ablation/damage 
(dark blue zone), 

proving the point of 
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•Conclusions
We obtained broadband third-harmonic generation in single and multi-layer functionalized
graphene.
We were able to fully retrieve the temporal profile of our laser pulses from a Ti:Sapphire 80 MHz
Rep. Rate oscillator, with very similar temporal structures for all samples (FWHM = 7.58 ± 0.24𝑓𝑠).

The hydration functionalization for the 5-layer few-islands graphene was successful, as a plateau
of constant THG intensity over exposure time can be obtained.
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