Layered monochalcogenides have been predicted as efficient materials for photoelectrochemical (PEC) applications. In this work, single-/few-/multi-layer flakes of germanium selenide (GeSe) have been produced by liquid-phase exfoliation of GeSe crystals to develop water splitting system and self-powered PEC-type photodetectors. The devices show responsivities up to 0.32 A W^{-1} at -0.5 V vs. RHE under 455 nm excitation wavelength in acidic electrolyte (0.5 M H$_2$SO$_4$), in which they also stably operate.

Introduction

Layered GeSe

Depending on pH and thickness, GeSe nanoflakes can act as photocatalysts for hydrogen and oxygen evolution reaction (HER and OER).

Liquid Phase Exfoliation Process

Advantages:
- Scalable production of GeSe nanoflakes-based inks
- High-processability through printing techniques

Equipment:
- Sonic bath
- Centrifuge

Solvent:
- 2-propanol (IPA)

Morphological Characterization

GeSe-based Electrode Fabrication and Experimental Setup

- SPRAY-COATING DEPOSITION
 - Industrially compatible
 - Scalable
 - Flexible electrodes

Photoelectrochemical Characterization of GeSe PEC-type Photodetectors

The obtained performances are superior to those of several self-powered and low-voltage solution-processed photodetectors, approaching the ones of self-powered commercial UV–Vis photodetectors. Our results open the way towards the use of 2D GeSe in novel PEC systems.

Conclusion

The obtained performances are superior to those of several self-powered and low-voltage solution-processed photodetectors, approaching the ones of self-powered commercial UV–Vis photodetectors. Our results open the way towards the use of 2D GeSe in novel PEC systems.