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• We fabricate WS2

nano-antennas using 
electron beam 
lithography and 
reactive ion etching.

• By tuning the etching 
recipe, we fabricate 
circular, hexagonal or 
square nano-pillars 
and nano-antennas.

2, Photonic resonances of nano-antennas1. Fabrication of WS2 nano-antennas

• Dimer and monomer WS2 nano-antennas yield second harmonic 
generation (SHG) enhancement [3].  

• Dimer nano-antennas result in a 1.6 times larger SHG enhancement than 
monomers and produce a polarization-dependent SHG signal.

4, Atomic force microscopy repositioning3. Second harmonic generation enhancement

• Simulations of nano-antennas with ultra-small gaps (10 nm) yield electric 
field intensity enhancements of > 103 as well as Purcell factors as high as 
157 for a single photon emitter positioned at the hotspots of a hexagonal 
dimer nano-antenna.

6, Optical trapping5. Electric field and Purcell enhancement of emission

7, Conclusion

• We fabricate two hexagonal 
nano-antennas in close 
proximity (<200 nm) as a dimer 
nano-antenna.

• Similar to individual WS2 nano-
disks [1], dimer nano-antennas 
host Mie resonances.

• The destructive interference 
between dipole and toroidal 
resonances form an energy-
confining anapole mode [2].

• Precise translation and rotation of 
individual nano-pillars in a dimer 
nano-antenna can be achieved 
with atomic force microscopy 
(AFM) owing to weak van-der-
Waals forces intrinsic to TMDs.

• Separation gaps as low as 10 nm 
are attainable.

• Such small gaps allow for large 
electric field intensities within 
hotspots formed in the dimer gap 
[4].

• Optical trapping force simulations for dimers with ultra-small gaps 
result in attractive forces as high as 353 fN for colloidal quantum dots 
and 73 for protein-like, polystyrene beads.

• Compared to recent reports of dielectric nano-antenna optical trapping 
[5,6], WS2 dimers yield larger forces by more than an order of 
magnitude.

• The large refractive index and transparency window in the visible as well as the compatibility to a variety of substrates establish TMDs as an attractive 
material for fabrication of nano-photonic structures and devices. 

• The large Purcell enhancements and optical trapping forces we calculate for WS2 dimer nano-antennas with ultra-small gaps highlight the necessity for 
AFM repositioning which is possible due to the weak van-der-Waals adhesion to the substrate.
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