

Fundamental Research Insights

Valley and Spin Blockade in Graphene Quantum Dots

<u>Chuyao Tong¹</u>, Annika Kurzmann¹, Rebekka Garreis¹, Wei Huang¹, Samuel Jele¹, Marius Eich¹, Christopher Mittag¹, Kenji Watanabe², Takashi Taniguchi², Klaus Ensslin¹ and Thomas Ihn¹ ¹ Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland ² National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan

Formation of Bilayer Graphene Quantum Dots

Finger Gates (FG B

Bilayer Graphene (BLG):

• Electric field perpendicular to BLG

- low spin-orbit interaction
- hyperfine interaction
- 2-fold spin and 2-fold valley degrees of freedom
- \rightarrow Promising for spin/valley quantum dot qubits

Spin \uparrow , \downarrow Valley K⁻, K⁺

• Spins in a magnetic field *B*: $\Delta E_{\uparrow}: + \frac{1}{2}g_{s}\mu_{B}B$ $\Delta E_{\downarrow}: -\frac{1}{2}g_{s}\mu_{B}B,$ where $g_s = 2$. (meV) • Valleys in a <u>perpendicular</u> magnetic field *B* (low field limit): Ш $\Delta E_{K^{+}}: + \frac{1}{2}g_{\nu}\mu_{B}B$ $\Delta E_{K^{-}}: -\frac{1}{2}g_{\nu}\mu_{B}B,$ where $g_v \sim 20 - 90$ is: • dependent on dot size and BLG gap size

long spin coherence time[1]

- Define gaps as tunnel barriers by barrier gate voltages $V_{\rm B}$ s
- Switch between hole \leftrightarrow electron dot by plunger gate voltages $V_{\rm LR}$.
- \rightarrow Double dots with reversible polarity

opens a band gap E_{gap} [2]

- Device = Van der Waals stack + metallic gate
- Top- + back-gates opens bandgap E_{gap} + tune Fermi energy E_F:
 - \rightarrow Split gates define a conducting channel
 - \rightarrow Finger gates tune the channel locally

e.g. +ve V_{BG} & -ve V_{SG} & -ve V_{FG} s \rightarrow *n*-type double dots in *n*-type channel

log₁₀[G/(e²/h)]

202

Single particle level spectrum extracted from Coulomb resonances [3].

Peculiar two-particle states & Pauli Spin and Valley Blockade

- From excited-state measurements for 2 particles in one dot [4] (2,0) :
- (A): low-field **ground state**: Spin-triplet valley-triplet : $|T_s^-\rangle |S_v^-\rangle$ + One exchange energy E_{ch} above: Spin-singlet valley-triplet : $|S_s\rangle |T_v^{-,+}\rangle$

Perpendicular *B* field couples to the valleys and lower $|S_s\rangle |T_v^-\rangle$ by $2\Delta E_{K^-}$:

(B): high-field **ground state**: Spin-triplet valley-triplet : $|S_s\rangle |T_v^-\rangle$ + $E_{ST} = 2\Delta E_{K^-} - E_{ch}$ above: Spin-triplet valley-triplet : $|T_s^-\rangle |S_v^-\rangle$

Double dot charge stability diagram [3], with $V_{\text{bias}} = 2 \text{ mV}$.

Conclusion & Outlook

- Mature graphene quantum dot technology
- High quality samples

(PA)

Gate tunable parameters (carrier occupancy, tunnel barrier, polarity, size, valley g-factor etc...) Good understanding of QDs

2-particles each on one dot (1,1), for weak enough interdot coupling: \rightarrow two x 4 single-particle levels \rightarrow 16 levels with 10 different energies

 \rightarrow For (1,1) \rightarrow (2,0) spin or

valley flip always required

• Robust Pauli spin and valley blockade

• Ready for spin and valley qubit manipulation and readouts

 \bigcirc

2021

Ground state (always): $|\downarrow K^{-}\rangle |\downarrow K^{-}\rangle$

suppresses current by > 50 times (<300fA) Spin blockade: Valley blockade: suppresses current by 5 times

-5.36

CONTACT PERSON REFERENCES

Chuyao Tong ctong@phys.ethz.ch

[1]: B. Trauzettel, et al. *Nat. Phys.* **3**, 192–196 (2007). [2]: J.B. Oostinga, et al. Nat. Mater. 7, 151–157 (2008). [3]: C. Tong, et al. *Nano Lett* **21.2** 1068-1073 (2021). [4]: A.Kurzmann, et al., Phys. Rev. Lett. 123, 026803 (2019). [5]: C. Tong, et al., in preparation.

