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In the past decade, transition metal dichalcogenides (TMDs) have drawn large scientific interest involving their inte-
gration with nano-photonic structures [1, 2]. However, the use of TMDs in these studies was limited to single and few-layer
samples coupling to resonances and cavity modes in different material systems. Recently, TMDs have emerged as promis-
ing materials for fabrication of nano-photonic resonators due to their large refractive index and low absorption within a
large portion of the visible spectrum. Another advantage of this material family is their compatibility with a wide variety of
substrates owing to their van-der-Waals attractive forces. Recent reports have demonstrated WS2 nano-disk Mie resonators
where strong light-matter coupling [3] and second harmonic generation (SHG) enhancement [4] were observed. However,
further uses for this material family within the nano-photonic field have been in short supply.

In our work we study the nano-photonic capability of TMDs by fabricating single (monomer) and double (dimer)
nano-pillar antennas in a circular, square or novel zigzag-terminated hexagonal geometries with potentially atomically
sharp edges and vertices. We probe the structures with dark field spectroscopy followed by second harmonic generation
experiments, in which we induce polarization-dependent enhancement due to coupling with an anapole mode. In order to
achieve ultra-small dimer gaps and rotate the relative orientation of individual nano-pillars, we introduce a post-fabrication
atomic force microscopy (AFM) step, achieving gaps limited by our spatial resolution. The smallest dimer gap we measured
(10±5 nm shown in middle inset of Fig. 1) confirms that we have reached the fabrication limit of focused ion beam milling,
yet we provide a more precise and less damaging method for controlling the photonic properties of these structures.

Simulations of such nano-antennas yield electric field intensity enhancements of more than 103 at hotspots surrounding
the edges of the fabricated hexagonal geometry. We calculate a Purcell factor as high as 157 for single photon emitters
(SPEs) positioned within these hotspots (right image of Fig. 1). A route to the modulation of these values by varying
the gap separation and relative rotations of the nano-pillars is also readily available. Optical trapping simulations for such
small gaps result in attractive forces of >350 fN for colloidal quantum dots (QDs) (left image of Fig. 1) and > 70 fN for
protein-like, polystyrene beads. These results surpass previous reports of dielectric nano-antennas by a factor of >83 for
QDs [5] and >40 for PBs [6].

Figure 1: Simulations for a repositioned WS2 hexagonal dimer nano-antenna. Left plot:
Optical trapping force for a 10 nm QD translated across the z-axis in the middle of the
dimer gap (g) for 10mW/µm pump intensity. Bottom right inset shows positions of QD.
Right plot: Purcell factor for a SPE placed along the dimer axis 0.5 nm above the surface
of nano-antennas with different geometries. Solid lines: g = 10 nm. Dashed lines: g =
50 nm. Right inset shows positions of SPE for different geometries. Inset middle: AFM
scan of a repositioned WS2 hexagonal dimer nano-antenna.
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