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Shell filling and trigonal warping in graphene quantum dots 
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The investigation of the quantum dot ground states, excited states and addition spectra led to a 
complete understanding of the orbital and spin degeneracies of quantum dots in traditional 
semiconductors like InGaAs, GaAs and silicon, and hence made these quantum dots interesting as 
solid-state qubits. For vertical quantum dots etched into a circular geometry shell filling and Hund’s 
rule spin filling was observed [1]. Another promising material for solid state qubits is graphene [2]. 
Graphene offers an environment with few nuclear spins (reducing hyperfine interactions compared 
to III-V semiconductors) and it is a light element (reducing spin-orbit effects even compared to 
silicon). Compared to other conventional semiconductors, electrons in bilayer graphene possess an 
additional valley degree of freedom and a non-trivial minivalley band-structure due to trigonal 
warping [3]. Applying a displacement field perpendicular to the bilayer graphene sheet opens a 
bandgap and forms three shallow minivalleys around the K and K’ points, this allows to 
electrostatically define and control quantum dots [4]. However, the formation and relevance of the 
minivalleys for low-energy quantum dot states can be tuned by the band gap and the size of the 
quantum dot.  

Here, we experimentally investigate shell filling effects in a nearly circular quantum dot in bilayer 
graphene [5]. Starting from the empty quantum dot we observe a successive bunching of four, eight 
and twelve conductance resonances, which becomes visible in the addition energy as shown in  
Fig. 1. We describe this observation in terms of a transition from a level scheme given by two-
dimensional s- and p-shells for the first electrons to a level scheme dominated by mini-valleys with 
three-fold degeneracy. 
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Figure 1: Addition energy for an extra electron versus number of electrons in the dot extracted from the 
separation between Coulomb resonances in a conductance trace. 


