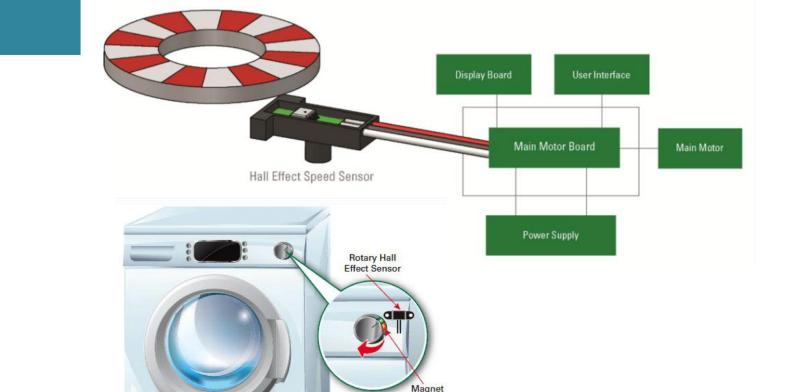
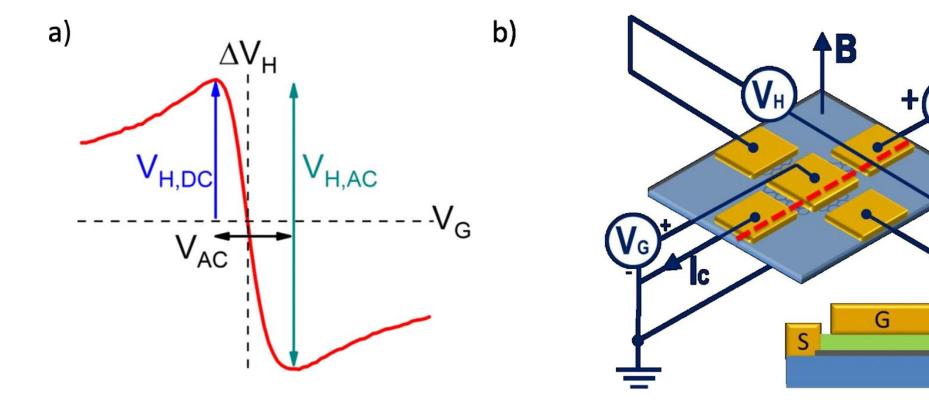


Gate-tunable graphene-based Hall sensors on flexible substrates with increased sensitivity

Burkay Uzlu, Zhenxing Wang, Sebastian Lukas, Martin Otto, Max C. Lemme & Daniel Neumaier


INTRODUCTION

Applications of Hall sensors


- Speed Detection
- **Precise Rotation Detection**

Application Fields of Hall sensors

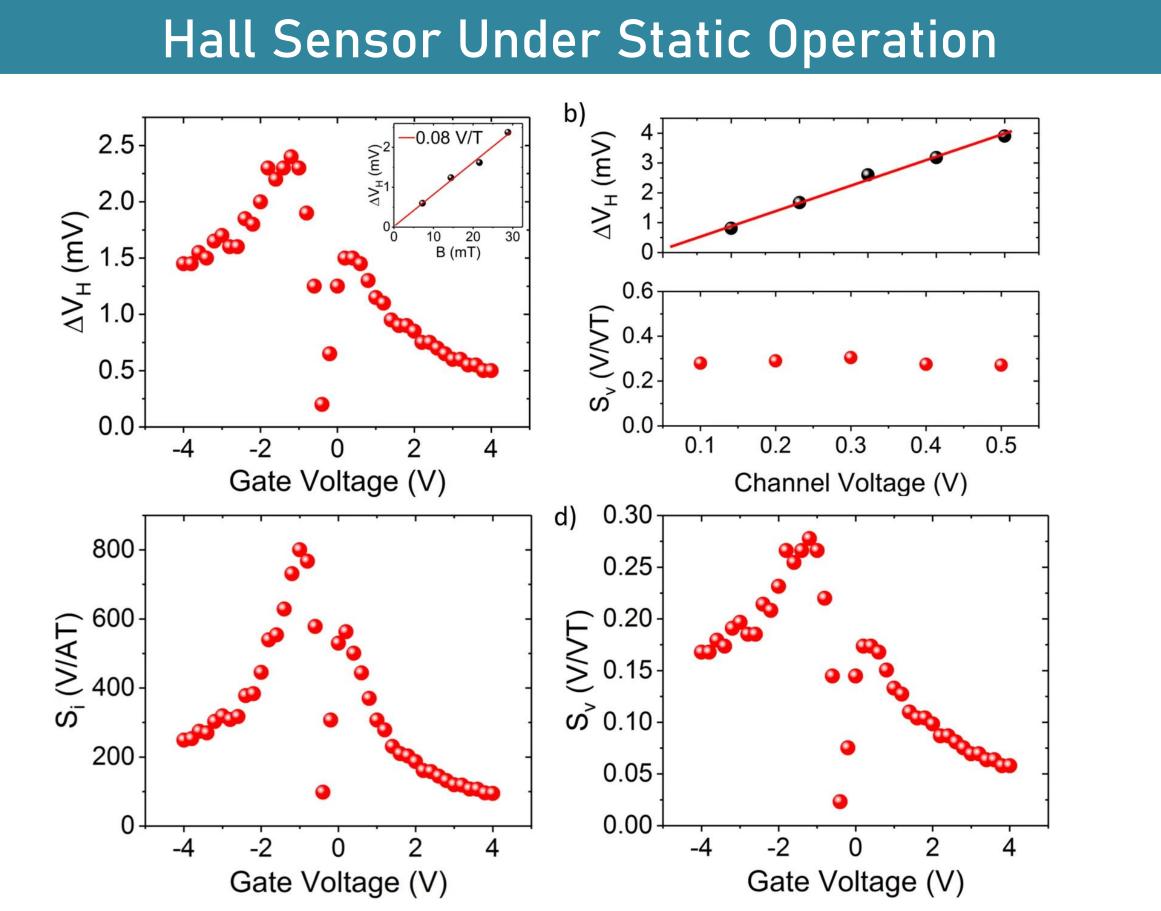
- Automotive
- Consumer Electronics
- Telecommunication

Medical

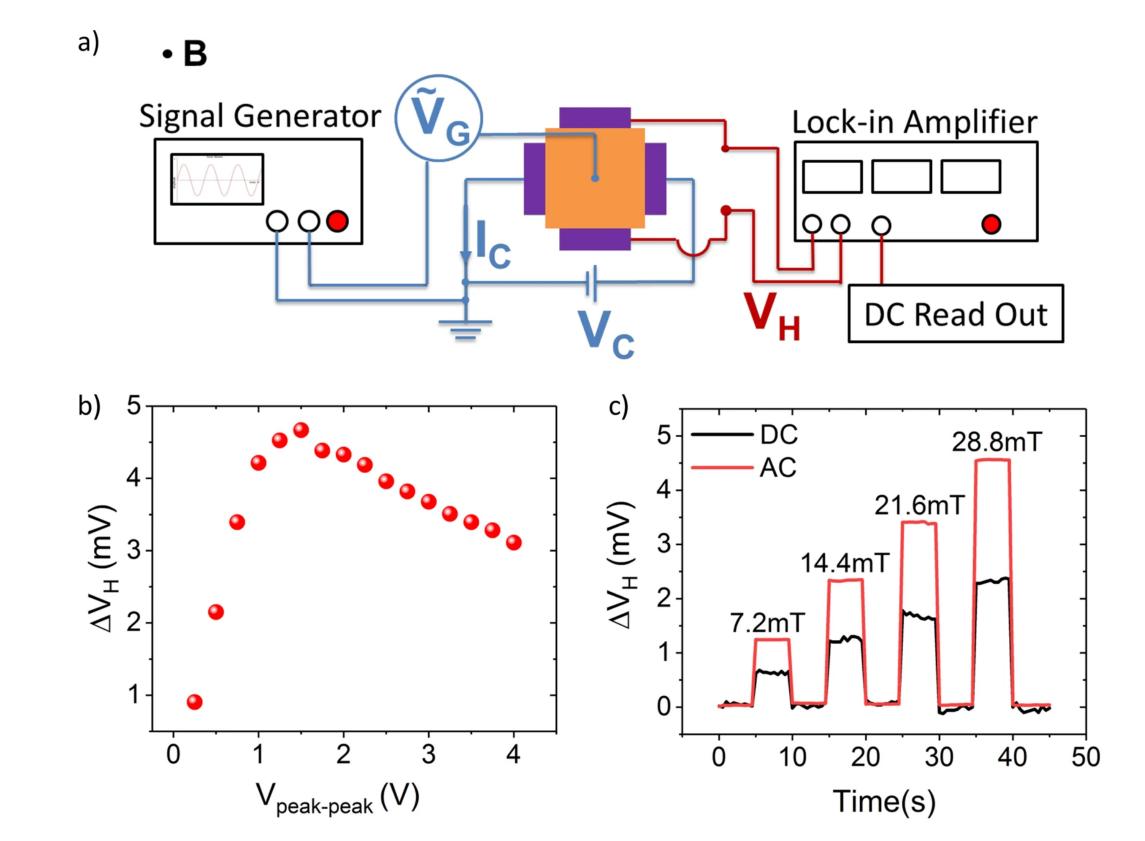
Key Parameters

• Sv $\sim \mu$, Si $\sim 1/n$ and B_{min} Graphene is an ideal material Due to;

- High mobility
- Low carrier concentration


Alternating current (AC) modulated gate voltage provides two important advantages compared to Hall sensors under static operation;

- 1. The sensor sensitivity can be doubled by utilizing both n- and p-type conductance.
- 2. A static magnetic field can be read out at frequencies in the kHz range,
- where the 1/f noise is lower compared to the static case. (better B_{min})
 - Flexibility opens up new application fields like wearable sensors for personal fitness and healthcare systems.


Microscope Image

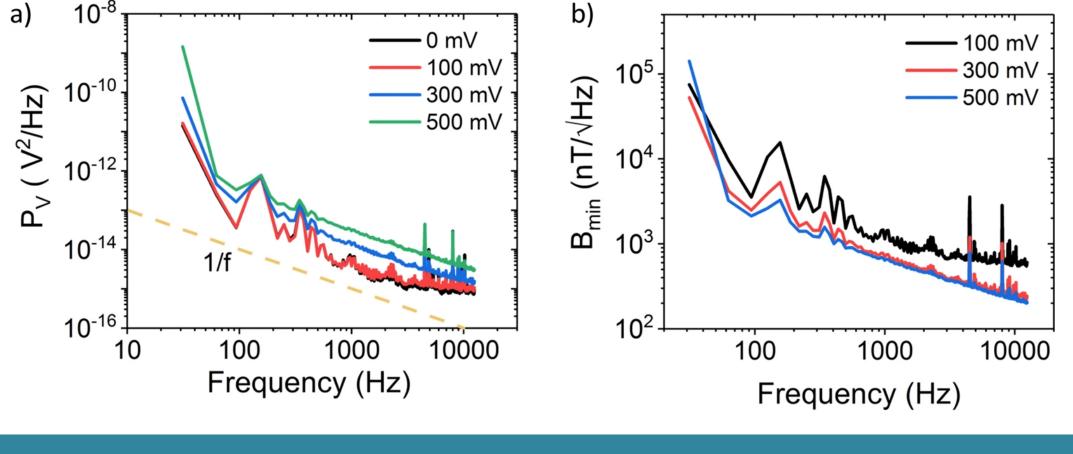
Exfoliated hBN

(a) Comparison of measured ΔV_{Hall} and basic operating principles using a DC gate voltage and an AC modulated gate voltage across the charge neutrality point. In the latter, both sensitivity maxima for n- and p-type conductance can be utilized and the effective sensitivity is doubled by AC gate modulation. (b) Isometric device schematic of the top gated graphene Hall sensor

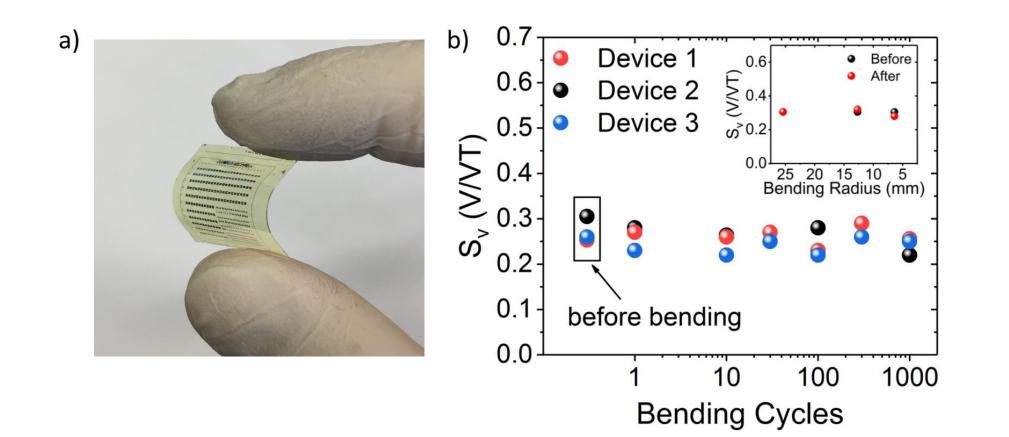
Hall Sensor Under AC modulated Gate Voltage

Hall measurements of the sensor. (a) Magnitude of the ΔV_{Hall} as a function of the gate voltage at $V_{Channel}$ =300mV. The inset shows ΔV_{Hall} as a function of the magnetic field at $V_{Gate} = -1.2V$. (b) ΔV_{Hall} and voltage sensitivity Sv as a function of channel voltage. (c,d) Absolute values of current sensitivity Si and Sv plotted against V_{Gate} at $V_{Channel}$ =300mV.

Measured Hall Mobility of the graphene is 4400 cm² /Vs


(a) Illustration of AC gate modulation setup . (b) Hall voltage response of the device to the varying magnetic field at a peak to peak gate modulation amplitude at 28.8 mT. (c) Offset removed Hall voltage under DC (black) and AC (red) operation over time, while the magnetic feld was stepped between 7.2 mT up to 28.8 mT

Sensitivity is doubled compared to static operation and values up to 0.55 V/VT was achieved on flexible polyimide (PI) substrates.


Comparison with Other Hall Elements

GaAs ²⁸ Rigid 1100 n/a 800 3 n/a Exfoliated Gr-hBN ⁹ Rigid 4100 2.16 50 3 Vacuu CVD Gr ²⁹ Rigid 800 n/a 500 3 Vacuu CVD Gr ²⁹ Rigid 2093 0.35 100 3 Air CVD Gr ³⁰ Rigid 2093 0.35 100 3 Air CVD Gr ⁸ Flexible 75 0.093 n/a n/a Air CVD Gr-hBN ²² Flexible 2270 0.68 n/a n/a Air Bismuth ³¹ Flexible 2.3 n/a n/a n/a Air								
Si ^{1,28} Rigid 100 0.1 5000 3 n/a AllnSb ^{4,6} Rigid 2750 2.2 58 1 Vacuu GaAs ²⁸ Rigid 1100 n/a 800 3 n/a Exfoliated Gr-hBN ⁹ Rigid 4100 2.16 50 3 Vacuu CVD Gr ²⁹ Rigid 800 n/a 500 3 Vacuu CVD Gr ²⁹ Rigid 2093 0.35 100 3 Air CVD Gr ⁸ Flexible 75 0.093 n/a n/a Air Bismuth ³¹ Flexible 2.3 n/a n/a Air			6.1.4.4	\mathbf{S}_{i}	S_v	\mathbf{B}_{\min}	Frequency	Canditiana
AllnSb ^{4,6} Rigid 2750 2.2 58 1 Vacuu GaAs ²⁸ Rigid 1100 n/a 800 3 n/a Exfoliated Gr-hBN ⁹ Rigid 4100 2.16 50 3 Vacuu CVD Gr ²⁹ Rigid 800 n/a 500 3 Vacuu CVD Gr ²⁹ Rigid 2093 0.35 100 3 Air CVD Gr ³⁰ Rigid 2093 0.35 100 3 Air CVD Gr ⁸ Flexible 75 0.093 n/a n/a Air Bismuth ³¹ Flexible 2.3 n/a n/a n/a Air			Substrate	(V/AT)	(V/VT)	(nT/\sqrt{Hz})	(kHz)	Conditions
GaAs ²⁸ Rigid 1100 n/a 800 3 n/a Exfoliated Gr-hBN ⁹ Rigid 4100 2.16 50 3 Vacuu CVD Gr ²⁹ Rigid 800 n/a 500 3 Vacuu CVD Gr ²⁹ Rigid 800 n/a 500 3 Vacuu CVD Gr ³⁰ Rigid 2093 0.35 100 3 Air CVD Gr ⁸ Flexible 75 0.093 n/a n/a Air Bismuth ³¹ Flexible 2.3 n/a n/a Air		Si ^{1,28}	Rigid	100	0.1	5000	3	n/a
Exfoliated Gr-hBN ⁹ Rigid 4100 2.16 50 3 Vacuu $CVD Gr^{29}$ Rigid 800 n/a 500 3 Vacuu $CVD Gr^{29}$ Rigid 2093 0.35 100 3 Air $CVD Gr^{30}$ Rigid 2093 0.35 100 3 Air $CVD Gr^8$ Flexible 75 0.093 n/a n/a Air $CVD Gr-hBN^{22}$ Flexible 2270 0.68 n/a n/a Air Bismuth ³¹ Flexible 2.3 n/a n/a Air		AlInSb ^{4,6}	Rigid	2750	2.2	58	1	Vacuum
CVD Gr ²⁹ Rigid 800 n/a 500 3 Vacuu CVD Gr ³⁰ Rigid 2093 0.35 100 3 Air CVD Gr ⁸ Flexible 75 0.093 n/a n/a Air CVD Gr ^{-h} BN ²² Flexible 2270 0.68 n/a n/a Air Bismuth ³¹ Flexible 2.3 n/a n/a Air		GaAs ²⁸	Rigid	1100	n/a	800	3	n/a
CVD Gr^{30} Rigid 2093 0.35 100 3 Air CVD Gr^{8} Flexible 75 0.093 n/a n/a Air CVD Gr^{8} Flexible 2270 0.68 n/a n/a Air Bismuth ³¹ Flexible 2.3 n/a n/a n/a Air	7	Exfoliated Gr-hBN ⁹	Rigid	4100	2.16	50	3	Vacuum
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	L	CVD Gr ²⁹	Rigid	800	n/a	500	3	Vacuum
CVD Gr-hBN ²² Flexible22700.68n/an/aAirBismuth ³¹ Flexible2.3n/an/an/aAir		CVD Gr ³⁰	Rigid	2093	0.35	100	3	Air
Bismuth ³¹ Flexible 2.3 n/a n/a n/a Air		CVD Gr ⁸	Flexible	75	0.093	n/a	n/a	Air
		CVD Gr-hBN ²²	Flexible	2270	0.68	n/a	n/a	Air
This work Elexible 1500 0.55 500 2 Air	L	Bismuth ³¹	Flexible	2.3	n/a	n/a	n/a	Air
	ſ	This work	Flexible	1500	0.55	500	2	Air

Noise and Minimum detectable field (B_{min})

Bending Tests For Flexible Hall Sensor

This work (max)	Flexible	2580	0.68	290	2	Air

Metrics comparison of different high-performance Hall elements working at room temperature

Results show that our CVD graphene based Hall sensors on flexible substrates outperforms all the other Hall sensor elements on flexible substrates and are highly competitive with respect to all existing technologies on rigid substrate. The measured minimum magnetic resolution of our Hall sensors also is close to the very best values achieved by exfoliated graphene based Hall sensors

Burkay Uzlu <u>uzlu@amo.de</u>

ACKNOWLEDGEMENTS

GRAPHENE FLAGSHIP 785219

CONTACT PERSON

REFERENCES

- 1. Uzlu, B., Wang, Z., Lukas, S. et al. Gate-tunable graphene-based Hall sensors on flexible substrates with increased sensitivity. *Sci Rep* **9**, 18059 (2019). <u>https://doi.org/10.1038/s41598-019-54489-0</u>
- 2. Wang, Z., Shaygan, M., Otto, M., Schall, D. & Neumaier, D. Flexible Hall sensors based on graphene. Nanoscale 8, 7683–7687 (2016).
 - 3. Dauber, J. et al. Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride. *Appl. Phys. Lett.* **106** (2015).
 - 4. Wang, Z. et al. Encapsulated graphene-based Hall sensors on foil with increased sensitivity. Phys. *Status Solidi Basic Res.* **253**, 2316–2320 (2016).

raphene Industrial Forum &200 - 2020