

UFMG Direct observation of large strain through van der Waals gaps on epitaxial $Bi_2Te_3/graphite: pseudomorphic relaxation and the role of <math>Bi_2$ layers on the Bi_xTe_y topological insulator series

2020

Gilberto Rodrigues-Junior¹, Lucas Atila Bernardes Marçal^{1,2}, Guilherme A.S. Ribeiro¹, Paulo Henrique de Oliveira Rappl³, Eduardo Abramof³, Paulo Victor Sciammarella⁴, Luciano de Moura Guimarães⁴, Carlos Alberto Pérez⁵ and Ângelo Malachias¹

¹ Universidade Federal de Minas Gerais, ² Synchrotron Radiation Research and NanoLund, ³ Instituto Nacional de Pesquisas Espaciais - INPE, ⁴ Universidade Federal de Viçosa - UFV, ⁵ Laboratório Nacional de Luz Sincrotron - LNLS,

Introduction

Layered materials can usually grow without strain on top of distinct substrates if the only interaction between them is due to van der Waals forces [1]. In such scenario it would be expected that the heterointerface made up of weak bounds would not affect the overlayed material significantly for several large lattice-mismatched systems [1]. Here we have studied the first stages of the heteroepitaxial growth of layered bismuth telluride topological insulator on top of highly oriented pyrolitic graphite (HOPG) by molecular beam epitaxy. Atomic Force Microscopy (AFM) images show hexagonal/triangular flat islands with exposed HOPG areas for the low coverage regime, and the lattice parameter of these Bi₂Te₃ structures were measured by X-ray diffraction (XRD). The existence of pseudomorphic strain at the initial Bi₂Te₃ layers was retrieved by both X-ray diffraction and Raman spectroscopy. We have found out evidence that Bi₂Te₃ layers near the interface are subject to an in-plane compressive strain, leading to a pseudomorphic out-of-plane lattice expansion. Furthermore, the presence of Bi₂Te₃ islands locally distorts the topmost layer of HOPG, resulting in tensile strain which is measured by Raman spectroscopy. The observed relaxation of 0.1 – 0.2 % for each van der Waals gap is used to calculate elastic constants of Bi₂ bilayers, which are crucial building blocks to the formation of other Bi_xTe_v topological insulator compounds. Finally, the impact of such structure was investigated by DFT calculations. The results show that band structure of this strained material remains unchanged at the center of the Brillouin zone, confirming the robustness of surface states, but it is consistently affected at the M and K zone. edges[2].

Sample growth

Molecular Beam epitaxy

- Growth temperature **T_{HOPG}= 170°C**
- One effusion cell was filled with nominal Bi₂Te₃, while two other cells charged with pure tellurium were used to keep the desired Te₂/Bi₂Te₃ beam equivalente pressure ratio of
- Deposition rate of 0.14 QLs/min
- The set o sample used here had deposition times of 10,20,40,60, 100 and 180 min that led to nominal coverages of 1.4, 2.8, 5.6, 8.4, 14 and 25.2 QLs, respectively

Characterization

- **Atomic Force microscopy** tapping mode
- Typical AFM imagens showing the change in Bi₂Te₃ morphology with growth time
- Expected epitaxial relation between HOPG graphite and Bi_2Te_3

- Raman spectroscopy Backscattering geometry excitation source: 632.8 nm HeNe laser
- X-ray diffraction Coplanar 2-theta-theta geometry Transmission 2-theta-theta geometry Energy 10 KeV ($\lambda = 1.2399 \text{ Å}$)

DFT calculation

40 min

20 min

100 min

Results

Bi₂Te₃ (QL)

£ 4.48

Compound

Bi-bulk calculatio

Raman spectra measured for the Bi₂Te₃ / HOPG samples set with coverage ranging from 1.4 to 8.4 QLs: (a) in the energy interval of $Bi_2Te_3 A_{1a}^1$, E_a^2 and A_{1a}^2 peaks showing a shift of the Raman modes for the 1.4 QLs and 2.8 QLs samples with respect to other coverages; (b) G band (b) in the energy interval of graphite G and 2D bands, exhibiting a gradual shift of the G band position to lower energies as the coverage reduces. The inset presents a zoom in the G band, where a maximum shift of 6 cm⁻¹ can be observed for our sample with lowest coverage; (c) Energy shifts of the Raman peak positions as a

		Average height (nm)
Measured (blue dots)		0 20 40 60 80 100 120 140
and extrapolated	30.75	Experimental data
(black dots) lattice	30.70	Extrapolated from fit
parameters from our		1
XRD results (a) Out-	30.60 🗲	-
of-plane and (b) In-	о 30.55	
	30.50	(a)
	30.45	<u>مَ</u>
parameter as a		
function of island	4 000	
average height. (c)	4.392	📔 🧯 🔹 Experimental data
The behavior of the	4.386	 Extrapolated from fit
c/a ratio showing the	<i>د</i> (گ	•
complete relaxation to	⁶ 4.380	
the bulk Bi ₂ Te ₃ lattice	4 374	(b)
parameters for high	4.074	
coverage samples. In	7.00	
all panels, the red	7.02	 Experimental data Extrapolated from fit

(a) Schemactic representation of the stacked layers that form the crystal structures of the Bi_xTe_v series of compounds, made from Bi₂Te₃ QLs (blue) and Bi₂ BLs (red) building blocks. (b) Comparison of in-plane lattice parameter for the Bi_xTe_v series values for measured (white/dashed bars), values from elastically calculated strained Bi₂ and Bi₂Te₃ layers using the bulk Bi elastic constants (narrow orange bars) and the stack of Bi_2/Bi_2Te_3 layers with the optimized E_{11} and v_{21} elastic constants for Bi₂ layers

Calculated band structure of Bi₂Te₃ for different values of thickness in quintuple layers. Red lines represent the band dispersion obtained using the lattice constants found our by measurements whereas black lines denote the ones obtained considering bulk values for a and c.

Conclusions

We have shown here that Bi₂Te₃ flat islands change the morphology with increase in the growth time. The islands exhibit a large in-plane compressive strain at the Bi₂Te₃/HOPG interface accompanied by a consequential out-of-plane pseudomorphic expansion. We also have estimated the elastic constants of Bi₂ bilayers. Finally, from DFT calculations such strain do not affect the eletronic structure at the center of Brillouin zone, they can play a major role at the M and K edges.

CONTACT PERSON

Gilberto Junior gil.j1908@gmail.com

REFERENCES

 A_{1a}^2

2D band

8.4 QLs

5.6 QLs

2.8 QLs

8.4 QLs

60 80 100 120 140 Raman Shift (cm⁻¹)

[1] C. Parra *et. al.*, Nano Letters, 17 (2017), 97-103 [2] Rodrigues-Junior et al., Phys. Rev. Materials, 4 (2020), 023602

