Ultra-broad spectral photoresponse in FePS₃ air-stable devices

M. Ramos,^{1,*} F. Carrascoso,² R. Frisenda,² P. Gant,² S. Mañas-Valero,³ D.L. Esteras,³ J.J. Baldoví,³ E. Coronado,³ A. Castellanos-Gomez,² M.R. Calvo^{1,4}

¹Departamento de Física Aplicada, Universidad de Alicante, Campus de San Vicente del Raspeig, Alicante, Spain

²Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, Spain
³Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna, Spain
⁴Instituto Universitario de Materiales de Alicante (IUMA), Alicante, Spain
*mramos@ua.es

Abstract

The family of transition metal phosphorus trichalcogenides, with general formula MPX₃ (with M a transition metal, P phosphorus and X = S or Se chalcogens), is gaining relevance as they offer competitive advantages when compared to other semiconducting and/or magnetic two-dimensional materials [1]. The photoresponse of FePS₃ has recently been addressed in the context of photodetection applications limited only to the ultraviolet spectral range [2]. Here, we push forward the state of the art, presenting a detailed spectral distribution of the electrical photoresponse of FePS₃ nanosheets, finding that FePS₃ is a narrow gap p-type semiconductor with a high enough conductivity to enable the electrical detection of optical excitations in a broad wavelength range. In addition, we observe a significant stability of FePS₃ nanosheets when exposed to air and/or light, higher than for other magnetic materials, which facilitates device preparation, characterization and, eventually, application. With views to the future, this work manifests the relevance of FePS₃ not only for ultrabroad photodetection but as a key material for investigations on magneto-optics and opto-spintronics at the 2D limit among a wide spectral range.

REFERENCES

- [1] Lee, J., et al. Nano Letters, 16 (2016) 7433.
- [2] Gao, Y., et al. Nanotechnology, 29 (2018) 244001.
- [3] Brec, R., et al. Inorganic Chemistry, 18 (1979) 1814.

FIGURES

Figure 1: (a) Optical image of a FePS₃ device onto a SiO₂/Si substrate with pre-patterned Ti/Au contacts (1-3). (b) *I-V* plot at different applied gate voltages ($V_g = -10, 0 \ 10 \ V$). (c) Photocurrent versus time at different optical excitation energies. (d) Our experimental Tauc plot (blue and grey dots) and absorbance measurements reported by Brec, et al. (red dots) [3]. (e) Rise time of the FePS₃ photodetector as a function of the incident photon energy. The inset shows the trend of the photocurrent with time as a function of energy.

GRAPHENE AND 2DM ONLINE CONFERENCE (GO2020)