



Piezoresistive sensing performance of ex-situ transferred nanocrystalline graphite on a flexible substrate O.-G. Simionescu<sup>1,2</sup>, C. Pachiu<sup>1</sup>, G. Crăciun<sup>1</sup>, N. Dumbrăvescu<sup>1</sup>, S. Vulpe<sup>1</sup>, A. Avram<sup>1</sup>, R. C. Popa<sup>1</sup>, O. Buiu<sup>1</sup> <sup>1</sup>National Institute for Research & Development in Microtechnologies, 126A Erou Iancu Nicolae street, Voluntari city, Ilfov county, 077190, Romania; <sup>2</sup>Faculty of Physics, University of Bucharest, 405 Atomistilor street, Măgurele city, Ilfov county, 077125, Romania;



# ABSTRACT

Our contribution presents the performance of NCG as a piezoresistive element in strain sensors. The NCG film is grown by plasma enhanced chemical vapour deposition (PECVD) (Nanofab 1000 - Oxford Instruments, UK) on a metallic substrate; the structure and the morphology of the film is investigated by Raman spectroscopy (high resolution Scanning Near-Field Optical Microscope fited with the Raman Module Witec Alpha 300S - Witec, Germany) and scanning electron microscopy (SEM) (Nova NanoSEM 630 Scanning Electron Microscope - FEI Company, USA). After the ex-situ transfer onto a flexible substrate, the piezoresistive performance is investigated by measuring the electrical resistance (precision multimeter 8846A - Fluke, USA) of the sensitive layer during controlled mechanical stretching (MultiTest 2.5-i - Mecmesin, UK) of the device. Experimental results confirm NCG is a fitting material for low-strain (< 1%) piezoresitive sensing, GFs of up to 236 being recorded.

# EXPERIMENTAL DETAILS

The NCG growth is carried out by RF-PECVD in a CH<sub>4</sub>:H<sub>2</sub> (1:1.25) atmosphere, using a parallel plate reactor. The precursor is injected through the top electrode, while the substrate is placed on the lower grounded electrode. The full process parameters are presented in Table 1.

| Step                   | Time      | Heating speed | Temperature   | Pressure      | RF power            | Gas flow (sccm) |                |                 |
|------------------------|-----------|---------------|---------------|---------------|---------------------|-----------------|----------------|-----------------|
|                        | t (min)   | (°C/min)      | <b>T (°C)</b> | <b>p (Pa)</b> | P <sub>RF</sub> (W) | Ar              | H <sub>2</sub> | CH <sub>4</sub> |
| Heat-up                | -         | 15            | 2007890       | 40            | _                   | 1500            | 200            | -               |
| Cleaning               | 0.5       | _             | 890           | 200           | -                   | 1500            | 200            | -               |
| Growth                 | 0.5 – 120 | _             | 890           | 200           | 100                 | -               | 75             | 60              |
| Post plasma processing | 0.5       | _             | 890           | 200           | -                   | -               | 75             | 60              |
| Cool-down              | -         | 9             | 890\200       | 200           | -                   | 1500            | 200            | -               |

 Table 1: NCG growth parameters

#### MORPHOLOGICAL AND STRUCTURAL INVESTIGATION

# MECHANO-ELECTRICAL INVESTIGATIONS





| 50 - |           |
|------|-----------|
| 50   |           |
| F    |           |
|      | —         |
| L    | elondati  |
|      | – olonguu |

GF ~ 17.45

**Figure 1:** Cross-section SEM micrograph of a 1.25 µm thick NCG film grown on a metallic substrate.



**Figure 3:** Electrical resistance variation with respect to the mechanical displacement for a 10 nm thick NCG film before the conditioning cycles.





Figure 4: Electrical resistance variation with respect to the mechanical displacement for a 10 nm thick NCG film after 200 conditioning cycles.





**Figure 2:** Raman spectrum of a 1.25 µm thick NCG film grown on a metallic substrate. The dotted lines at 1347 cm<sup>-1</sup>, 1595 cm<sup>-1</sup>, 2687 cm<sup>-1</sup>, 2937 cm<sup>-1</sup> represent the specific D, G, 2D and D+D' peaks, respectively.

Figure 5: Electrical resistance variation with respect to the mechanical displacement for a 1.25 µm thick NCG film before the conditioning cycles.

Figure 6: Electrical resistance variation with respect to the mechanical displacement for a 1.25 µm thick NCG film after 200 conditioning cycles.

#### CONTACT PERSON

Octavian-Gabriel Simionescu octavian.simionescu@imt.ro

Dr. Octavian Buiu octavian.buiu@imt.ro

#### ACKNOWLEDGMENTS

This work was funded by UEFISCDI, contract no. 42PCCDI/ 2018, project PN-III P1-1.2-PCCDI-2017-0619 "Nanostructured carbonic materials for advanced industrial applications" Nanocarbon+ (<u>www.imt.ro/nanocarbon+/</u>).

