Phototransistors from Liquid-Phase Exfoliated Transition Metal Monochalcogenide Flakes

Nicola Curreli¹

Michele Serri¹, Davide Spirito¹, Marilena Isabella Zappia², Gabriele Bianca^{1,2}, Emanuele Lago¹, Elisa Petroni¹, Leyla Najafi^{1,2}, Beatriz Martin-Garcia¹, Zdenek Sofer³, Antonio Politano¹, Bekir Gürbulak⁴, Songül Duman⁴, Roman Krahne¹, Vittorio Pellegrini^{1,2}, and Francesco Bonaccorso^{1,2}

¹Italian Institute of Technology, via Morego 30, 16163, Genova, Italy ²BeDimensional Spa, Via Lungotorrente secca, 3d, 16163, Genova, Italy ³University of Chemistry and Technology, Technicka 5, 16628, Prague 6, Czech Republic ⁴Faculty of Sciences, Erzurum Technical University, 25050 Erzurum, Turkey nicola.curreli@iit.it

Abstract

LAYERED semiconductors of IIIA-VIA group, have attracted considerable attention in (opto)electronic applications thanks to their atomically thin structures and their (opto)electronic properties. Currently, two-dimensional (2D) indium selenide (InSe) and gallium selenide (GaSe) are emerging as promising candidates for the realization of thin-field effect transistors (FETs) and photodetectors due to their high intrinsic mobility $(10^2 - 10^3 \text{ cm}^2\text{V}^{-1}\text{s}^{-1})$ [1] and their direct bandgap in an energy range (1.3 – 3.2 eV) suitable for UV, visible and NIR light detection [2,3]. A requirement for large-scale electronic applications is the development of low-cost, reliable industrial production processes. In this context, it has been recognized that liquid-phase exfoliation (LPE) of InSe and GaSe is a cost-effective and environmentally friendly way to formulate inks for FETs, presenting a significant advantage over conventional methods [4]. In this study, we present printed InSe and GaSe phototransistors that exhibit high responsivity (13 – 274 AW⁻¹) and fast response velocity (15 -32 ms) [2,3]. Moreover, the GaSe phototransistors show an on-off current ratio of $\sim 10^3$ in the dark, which can be readily achieved without the need for complex design of drain/source contacts or gating techniques [2,3]. The gate-dependent photoresponse shows that the phototransistors can be modulated by the gate voltage. These results demonstrate that liquid-phase exfoliated InSe and GaSe are valid candidates for low-cost high-performance (opto)electronic devices.

REFERENCES

FIGURES

- [1] Chen, J., Tan, X., Lin, P., Sa, B., Zhou, J., Zhang, Y., Wen, C. and Sun, Z., Physical Chemistry Chemical Physics, 2019, 21(39), pp.21898-21907.
- [2] Curreli, N., Serri, M., Spirito, D., Lago, E., Petroni, E., Martín-García, B., Politano, A., Gürbulak, B., Duman, S., Krahne, R., Pellegrini, V. and Bonaccorso, F., Advanced Functional Materials, 2020, 30(13), p.1908427.
- [3] Curreli, N., Serri, M., Zappia, M.I., Spirito, D., Bianca, G., Buha, J., Najafi, L., Sofer, Z., Krahne, R., Pellegrini, V. and Bonaccorso, F., Advanced Electronic Materials, (submitted)
- [4] Bonaccorso, F., Bartolotta, A., Coleman, J.N. and Backes, C., Advanced Materials, 2016, 28(29), pp.6136-6166.

Figure 1: a) Schematic illustration of the InSe and GaSe phototransistors. b) Source–drain current (I_D) versus gate voltage (V_G) curve for InSe (top) and GaSe (bottom). c) Spectral responsivity of InSe (top) and GaSe (bottom) phototransistors

GRAPHENE AND 2DM INDUSTRIAL FORUM (GIF2021)