

Some results of the EC project FASTGRID

P. Tixador; M. Bauer; C. Creusot; A. Calleja; G. Deutscher; B. Dutoit; F. Gomory; G. Angeli; M. Noe; X. Obradors; M. Pekarčíková; F. Sirois.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n^o 721019

ib project – introduction. SPCE

Content

- Main objective of FASTGRID
- Cost reduction
- Electric field increase
- Thick Hastelloy[®] shunt conductor
- CFD implementation
- Representative module and tests
- FASTGRID at a glance
- Quench detection
- Conclusion

FASTGRID project – Main objective

Context: SFCL "Innovation for the electric grids"

- Intrinsic phenomena: 100 % fail safe
- Innovative solution without equivalence
- SFCL guarantees current limitation useful in AC & DC applications
- SFCL simplifies the circuit breaker design for DC grid
- Automatic recovery

Cost Foot print

Medium voltage

Birmingham

FASTGRID project – Main objective

Context: SFCL "Innovation for the electric grids"

- Intrinsic phenomena: 100 % fail safe
- Innovative solution without equivalence
- SFCL guarantees current limitation useful in AC & DC applications
- SFCL simplifies the circuit breaker design for DC grid
- Automatic recovery

Cost Foot print

High voltage

Birmingham

FASTGRID project – Main objectives

Context: SCFCL "Innovation for the electric grids"

Birmingham

- Intrinsic phenomena: 100 % fail safe
- Innovative solution without equivalence
- SFCL guarantees current limitation useful in AC & DC applications
- SFCL simplifies the circuit breaker design for DC grid
- Automatic recovery

 $Cost = Cost_{/m}^{Cond} \ell$

 $Cost = Cost_{/m}^{Cond} \ \ell \approx Cost_{SC} I_c \ \frac{V_{grid}}{E_{lim}}$

(E/kA/m) $Cost_{SC} = \frac{Cost_{/m}^{Cond}}{I_c}$

$$Cost = Cost_{/m}^{Cond} \ \ell \approx Cost_{SC} I_c \ \frac{V_{grid}}{E_{lim}} = \underbrace{\begin{array}{c} Cost_{SC} \\ E_{lim} \end{array}}_{Grid} k V_{grid} I_{grid} \\ Cost_{SC} = \frac{Cost_{/m}^{Cond}}{I_c}$$

Grant Number 721019

E_{lim} : thermal design (temperature rise limitation before isolation after Δt)

Adiabatic conditions: (Voltage source)

$$\int_{0}^{\Delta t} \frac{v(t)^{2}}{R} dt = Volume \int_{T_{o}}^{T_{max}} c_{p} dT$$

$$E_{lim} \approx \sqrt{\frac{\rho \ c_p \ \Delta T}{\Delta t}}$$

But SFCL should operate whatever is the fault current, for high but also low prospective currents

For I_{pros} ≈ I_c: only one/a few localized spot quenches with little extension (hot spot regime)

To cope with the hot spot regime a thick shunt must be added

Thick Hastelloy shunt conductor

AC power circuit

Typical test

- Electric field of 140 $V_{RMS}/m 50 ms$
- Very homogeneous quench
- Up to 64 GW/m³ and 40 MW/m²!
- T_{max} ≈ 400 K

Thick Hastelloy shunt conductor

CFD implementation

Hot spot issue due to:

- Inhommogeneous I_c along the sample
 - ΔI_c from > 10 % to 3-4 %

Hot spot issue due to:

- Inhommogeneous I_c along the sample
 - ΔI_c from > 10 % to 3-4 %
- Low Normal Zone Propagation Velocity NZPV
 - Increase the NZPV thanks to Current Flow Diverter (CVD)

CFD implementation

GdBCO

Many attempts

• The most interesting Sulfide-CFD incorporation

Easy incorporation of the CFD concept!

CFD implementation

Current transfer from silver in HTS was measured at EPM, which confirmed the CFD effect in sulfide-CFD samples

Time (s)

Content

- Main objective
- Cost reduction
- Electric field increase
- Thick Hastelloy[®] shunt conductor
- CFD implementation
- Representative module and tests

Pancake design and realization

- Conductor modelling and definition
 - Hot spot and limitation finite element modelling
- Pancake mechanical & electrical design + manufacturing
 - Design for 5 kV nominal voltage and 65 K
 - 34 m long winding
- Dielectric tests in liquid nitrogen at various pressures

Isolation design

Dielectric tests

Pancake tests carried out in Berlin in DC conditions (IPH)

Berlin – IPH - July 2020

Pancake tests carried out in Berlin in DC conditions (IPH)

- Conductors with Hastelloy[®] shunt as per sample tests
- Test voltage @ 6 kV, 14 kA prospective
- Limitation achieved 130 V/m during 30 ms @ 77 K
- Electrical endurance: 5 successive limitation tests
- Hot spot test performed before and after limitation test

Content

- Main objective
- Cost reduction
- Electric field increase
- Thick Hastelloy[®] shunt conductor
- CFD implementation
- Representative module and tests
- FASTGRID at a glance
- Quench detection
- Conclusion

FASTGRID at a glance

Smart conductor: optical fiber sensing for SFCL hotspot detection

Highly efficient, extremely low cost hotspot and very quick detection system

Summary and conclusion

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n° 721019

FASTGRID project – Summary

In short **FastGrid** has made possible a leap forward in the performances and cost of SFCL besides the many advances about CFD implementation, quench detection, sapphire substrate tapes, high c_p shunt, simulation and experimental tools...

Most of these advances are valid for other SC applications.

All the more there is a clear and real demand today for SFCL (Nexans).

Work continues!

32

A beautiful adventure with Barcelona (ICMAB & OXOLUTIA)

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n° 721019

