

Near-infrared luminescent nanoprobes for bioimaging and nanothermometry

G. Dantelle, A. Cantarano, M. Salaün, I. Vallerini-Barbosa, A. Ibanez

D.H. Ortgies, A. Benayas, D. Jaque

Universidad Autónoma de Madrid

UFG

M. Matulionyte, F. Vetrone

L.Q.J. Maia

Invited presentation, Friday, 9th April 2021

NIR luminescent nanoprobes

Introduction

1. Synthesis of Nd³⁺doped garnet nanocrystals

2. Functionalization by block copolymers

1730

3. In vivo bio-imaging

4. Nanothermometry

Molecules 2012, 17, 14067-1409

Nanoscale Horiz. 2016, 1, 168-184

Mol. Pharmaceutics **2013**, 10, 783–792

Rare-earth doped luminescent nanoprobes for bio-imaging and nanothermometry

Introduction

1. Synthesis of Nd³⁺doped garnet nanocrystals

2. Functionalization by block copolymers

3. In vivo bio-imaging

 \checkmark

4. Nanothermometry

- Numerous emission bands in the NIR
- Narrow emission bands -> spatial discrimination
- ✓ « Long » lifetimes -> temporal discrimination

D. Jaque & F. Vetrone *Nanoscale*, 4, **2012**, 4301 C.D.S. Brites et al. *Adv. Opt. Mater*, **2018**, 1801239 Measure temperature at the nanoscale with a contactless process

- ✓ High spatial resolution (< 1 μ m)
- ✓ Short acquisition time (< 1 ms)</p>
- ✓ High thermal sensitivity (> 1%.K⁻¹)

Targeted nanomaterials: garnet nanocrystals

Introduction

1. Synthesis of Nd³⁺doped garnet nanocrystals

2. Functionalization by block copolymers

3. In vivo bio-imaging

4. Nanothermometry

Nd³⁺-doped fluorides

Lots of Nd³⁺-doped **fluorides** (LaF₃, NaYF₄, ...) because of their strong photoluminescence related to their low phonon energy < 600 cm^{-1}

But: Dissolution ? Toxicity ?

- ✓ Phonon energy (< 900 cm⁻¹)
- ✓ Chemical robustness
- ✓ Ability to incorporate RE³⁺
- ✓ Versatile matrices

1. Synthesis of Nd³⁺doped garnet nanocrystals

2. Functionalization by block copolymers

3. In vivo bio-imaging

4. Nanothermometry

Synthesis of YAG nanocrystals by solvothermal method

Butanediol, 300°C

YAG nanocrystals

Suspension in ethanol

but bad crystallinity affects the PL

- Improved crystal quality
- Colloidal stability in water
- High photoluminescence intensity
- High thermal resolution

R. Kasuya et al. *J. Alloys Comp. 408* **(2006)** 820 R. Kasuya *J. Phys. Chem. B* **2005**, 109, 22126 M. Vorsthove, Mat. Res. Bull. 46 **(2011)** 1761

 $3 Y(acetate)_3 + 5 AI(O-i-Pr)_3$

1. Synthesis of Nd³⁺doped garnet nanocrystals

2. Functionalization by block copolymers

3. In vivo bio-imaging

4. Nanothermometry

Adaptation of the solvothermal process to obtain wellcrystallized nanocrystals

- Large T/P ranges:
 - ✓ T:0-1000°C
 - ✓ P: 0-800 bar
- Fixed P

• Optical windows for *in situ* photoluminescence experiments

Nucleation burst

rst Self-oriented aggregation

Coalescence

1. Synthesis of Nd³⁺doped garnet nanocrystals

2. Functionalization by block copolymers

3. In vivo bio-imaging

4. Nanothermometry

Adaptation of the solvothermal process to obtain wellcrystallized nanocrystals

- Home-made autoclaves
- Large T/P ranges:
 - ✓ T:0-1000°C
 - ✓ P: 0-800 bar
- Fixed P

Optical windows for *in situ* photoluminescence experiments

Nucleation burst

Self-oriented aggregation Coalescence Nanosinglecrystal

Fine control of the nanocrystallisation process

Testemale *et al. Rev. Sci. Inst.* **76**, 043905 **(2005)** Dantelle et al. *RSC Advances* 8 **(2018)** 26857-26870

²⁰⁰ bar, 400°C

Improved optical properties in the NIR

1. Synthesis of Nd³⁺doped garnet nanocrystals

2. Functionalization by block copolymers

3. In vivo bio-imaging

4. Nanothermometry

8

Colloidal suspension of YAG:Nd³⁺ nanocrystals in ethanol

Introduction

1. Synthesis of Nd³⁺doped garnet nanocrystals

TEM

2. Functionalization by block copolymers

3. In vivo bio-imaging

4. Nanothermometry

Butanediol groups grafted at the nanocrystal surface \succ

Stabilizes the nanocrystals in EtOH but not in water \geq

1. Synthesis of Nd³⁺doped garnet nanocrystals

2. Functionalization by block copolymers

3. In vivo bio-imaging

4. Nanothermometry

Copolymer grafting for stabilization in water and in PBS

> Copolymer grafting drastically increases colloidal stability in water

C. Gérardin et al, Angewandte Chemie Int. Ed. 2003, 42, 3681-3685

Copolymer grafting for stabilization in water and in PBS

Introduction

1. Synthesis of Nd³⁺doped garnet nanocrystals

2. Functionalization by block copolymers

3. In vivo bio-imaging

4. Nanothermometry

Proofs of copolymer surface grafting

A. Cantarano ... G. Dantelle, ACS Appl. Mater. Interfaces 12 (2020) 51273

NIR luminescence of (copo)-YAG:Nd³⁺ and *in-vivo* imaging

Introduction

1. Synthesis of Nd³⁺doped garnet nanocrystals

2. Functionalization by block copolymers

3. In vivo bioimaging

4. Nanothermometry

NIR luminescence of (copo)-YAG:Nd³⁺ and *in-vivo* imaging

Introduction

1. Synthesis of Nd³⁺doped garnet nanocrystals

2. Functionalization by block copolymers

3. In vivo bioimaging

4. Nanothermometry

Thermal sensitivity of (copo)-YAG:Nd³⁺: 0.14 %.K⁻¹

Introduction

1. Synthesis of Nd³⁺doped garnet nanocrystals

2. Functionalization by block copolymers

3. In vivo bio-imaging

4. Nanothermometry

A. Benayas et al. Adv. Mater. 2015, 1, 168 G. Dantelle et al. PCCP 2019, 21, 11132

L. Devys, G. Dantelle et al. *J. Lumin.* 190 **(2017)** 62 G. Dantelle et al. *SPIE* **(2018)** 10533

1. Synthesis of Nd³⁺doped garnet nanocrystals

2. Functionalization by block copolymers

3. In vivo bio-imaging

4. Nanothermometry

Thermal sensitivity of (copo)-GSAG:Nd³⁺

1. Synthesis of Nd³⁺doped garnet nanocrystals

2. Functionalization by block copolymers

3. In vivo bio-imaging

4. Nanothermometry

Thermal sensitivity of (copo)-YAG:Nd³⁺: 0.22 %.K⁻¹

Conclusions

Introduction

1. Synthesis of Nd³⁺doped garnet nanocrystals

2. Functionalization by block copolymers

3. In vivo bio-imaging

4. Nanothermometry

Original solvothermal synthesis (high P and high T)

- \rightarrow Well-crystallized garnet-type nanocrystals
- \rightarrow Size control in the range 60 to 200 nm
- \rightarrow Stable colloidal solutions in ethanol

✓ Robust stabilization process to obtain aqueous colloidal solutions

- → Effective surface adsorption of block copolymers
- \rightarrow Optimization of the process with other copolymers

High NIR luminescence and nanothermometry

- \rightarrow *In-vivo* bioimaging thanks to autofluorescence removal
- \rightarrow Competitive S_r (same order of magnitude as Nd³⁺-doped fluoride nanocrystals)
- \rightarrow Need for increasing S_r through the use of different matrices and new codoping systems (Start of a PhD, I. Vallerini-Barbosa between Inst. Néel and UFG, Brazil)

Thank you for your attention !

G. Dantelle, A. Cantarano, M. Salaün, I. Vallerini-Barbosa, A. Ibanez

geraldine.dantelle@neel.cnrs.fr

D.H. Ortgies, A. Benayas, D. Jaque

Universidad Autónoma de Madrid

UFG

GDRi Nanomateriaux Multifonctionnels Contrôlés

Friday, 9th April 2021