

Beyond SmartGrids: Making the electric grid secure, stable, reliable and resilient

08th of April of 2021 Dr. J.L. Domínguez-García (<u>ildominguez@irec.cat</u>) Head of Power Systems Group at IREC

Institute for Energy Research of Catalonia, IREC:

Began its R+D+I activities in January 2009.

IREC was created to contribute to the objective of creating a more sustainable future for energy usage and consumption, keeping in mind the economic competitiveness and providing society with the maximum level of energy security.

IREC is a reference institution for Energy Research in Catalonia, Spain and EU.

IREC is a recognized institution by the Catalonia Government as both **Basic** research and Industry oriented through KTT

Board of Trustees

GOVERNMENT OF CATALONIA	Secretaria d'Empresa i Competitivitat Direcció General de Recerca Direcció General d'Energia, Mines i Seguretat Industrial	Generalitat de Catalunya
GOVERNMENT OF SPAIN	CIEMAT (Ministerio de Economía y Competitividad) IDAE (Instituto para la Diversificación y Ahorro de la Energía - Ministerio de Industria, Turismo y Comercio)	
UNIVERSITIES	Politècnica de Catalunya (UPC) Barcelona (UB) Rovira i Virgili (URV)	UNIVERSITAT BARCELONA WIVERSITAT ROVIRA I VIRGILI
COMPANIES	ENAGÁS ENDESA NATURGY	enagas endesc Naturgy

RESEARCH AND TECHNOLOGICAL AREAS

Advanced Materials

- Functional Nanomaterials
- Catalysis
- Materials for Solar Systems
- Nanoionics and Fuel Cells
- Energy Storage and Harvesting
- Bioenergy and Biofuels
 - Thermochemical Conversion
 - Biorefinery

4 groups within this unit

Research Units

- Energy Efficiency: Systems, Buildings and Communities
 - NZEB (Net Zero Energy Buildings and Communities)
 - Integration of Renewables.
 - Smart Grids and Microgrids
 - Green IT
 - Electric Mobility
 - Energy Analytics

3 groups within this unit

Technological Development Units

POWER SYSTEMS GROUP – RESEARCH Objectives and keywords

Power Systems Group Strategy aims to provide solutions for the challenges of the future power systems in order to ensure the proper advent and implementation of the Digital Grid.

The global objective for the group is to set the path of future electrical network by the development of innovative solutions for the challenging task of ensuring resilient, stable, secure, digital and RES-based electrical network as the future of Power Systems.

- ✓ Renewable Energy Sources
- Energy Storage Systems
- Power Electronics
- ✓ Grid Integration
- ✓ Smart Grids & Microgrids
- ✓ IoT for Energy
- ✓ Grid Digitalization
- ✓ Resilience
- ✓ Cyber-Security
- ✓ Electric Vehicle

POWER SYSTEMS GROUP - RESEARCH LINES

POWER SYSTEMS GROUP - Activities

IREC Energy SmartLab

https://youtu.be/VgWzPUcAVAk

Institut de Recent Catalonia Instit

Table of Contents

1.- Introduction

2.- Risk Assessment

3.- Fault Identification and Location

4.- Impact Mitigation

Conventional Grid

Smart Grid

New electrical grid paradigm: SMART GRID CONCEPT

- Remote control and automation.
- Comprises everything from generation to consumption.
- The grid becomes
 - more flexible,
 - interactive
- Advanced management of the grid
 - sustainable, reliable and economic manner,
 - built on advanced infrastructure
- DER integration

Although, historically the electrical grid already made use of IT systems (as well-known **SCADAs**).

The **paradigm change** carried out by the increase of **RES**, **ESS**, **comms and IoT**, is opening novel opportunities for real-time monitoring and operation, wide-area information sharing, system interconnection, among others.

Digital Grid

Digital Grid

Digitalization

How can we do it?

Transport layer protocols

Smart Inverters

Internet of Things

SmartMeters

Challenges

What can we do with data and automation?

Actions for resilience, security and system reliability

Activities to be presented today

By taking advantage of existing data and parameters (population density, energy consumption, mean distribution, etc), estimations for the rest of the zones can be made. Example: **GREEN** real data, **BLUE** estimated electrical distibution centers.

Active data and KPIs control

Institut de Roberce en Energia de Catalonya Catalonia Institute for Energy Research

^{*1} Original fragility curve obtained from: FEMA (2009) Federal Emergency Management Agency (US government)

Cost assessment – Results when analyzing CTs

Reliability indexes calculation - Results

Demand and capability of **faster**, more **accurate** fault isolation

Facilitates the fault location process in various methods.

Need for further research in the case of distribution grids.

A new criteria has been developed by modifying and merging some existing ones which are more specific for transmission systems

1ph & 2ph faults	3ph faults	Distinction between 2ph faults
Based on Novosel et al.	Based on Kezunovic et al. with adjustments on the criteria sets	Criterion based on the theory of the symmetrical components

Theory: 2ph faults
$$\Rightarrow I_0 = 0$$

2ph-g faults $\Rightarrow I_0 = (-I_1) \frac{Z_2}{Z_0 + Z_2} \neq 0$
Criterion: $I_{0_{After}} - I_{0_{Before}} > I_{0_{Before}}$

IEEE 13 node test feeder

- 4 measurement points
- Highly unbalanced
- Low voltage branch

Parameters

- 1. Type of fault
- 2. Number of meters
- 3. Location of the fault
- 4. Fault resistance
- 5. Noise

RESULTS without fault resistance or noise

RESULTS with fault resistance

- **The electrical grid** a critical infrastructure that **needs to be resilient**, minimizing the service disruption to ensure minimum impact on end users.
- This can be achieved through **two main methods network reconfiguration** or allowing **islanded/disconnected operation**.
- **Objective:** Provide a self-healing and islanding method for the electric grid while minimizing the unsupplied loads and increasing network resilience.
- We can take advantage of distributed RES, ESS and prosumers, to select the optimal islands (dynamic microgrids) depending on the load and generation status.

Grid under testing Power Flow Results on Modified CIGRE 15 Benchmark

2 islands forced

Best Chromosome

Cutset	Interrupted Flow (MW)
Lines: 1-2, 5-6, 7-8	466.09

	P _G (MW)	P _L (MW)	Difference (MW)
Island 1	4800	4800	0
Island 2	200	200	0

Results

3 islands forced

Best Chromosome

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0

Cutset	Interrupted Flow (MW)	
Lines: 1-2, 5-6, 7-8 Load: 14	516.09	

	P _G (MW)	P _L (MW)	Difference (MW)
Island 1	4800	4750	50
Island 2	200	200	0

The Future Digital grid, opens new opportunities and brings new challenges.

Increased Resilience and Security of supply is key since the Electrical Grid is a CRITICAL INFRASTRUCTURE

In this regard, we have been working on the different key steps towards this as PLANNING, DETECTION and ACTUATION.

Further advances and usage of Data Analytics are key for this. The integration of various methods and techniques will end up into a DIGITAL TWIN of the distribution grid.

Thank you for your attention

Questions?

Dr.José Luis Domínguez-García Head of Power Systems Group jldominguez@irec.cat

