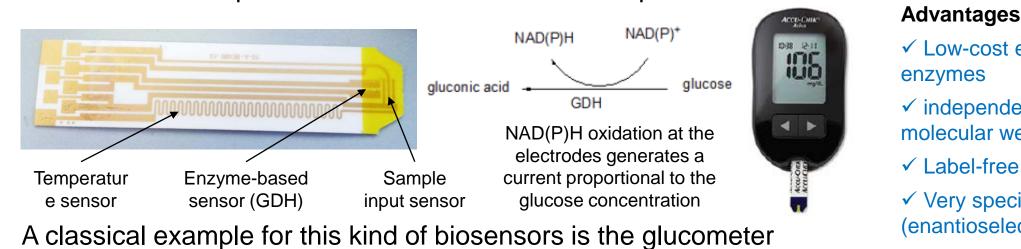


Institut Català de Nanociència i Nanotecnologia

Electrochemical Sensors For Pandemics Management: A Review of Current Diagnostic Devices and New Rapid-Deploy Systems


Giulio Rosati¹, Cecilia C. C. Silva^{1,2}, Claudio Parolo¹, Andrea Idili¹, Emily Nguyen¹, Lourdes Rivas¹, Ruslan Álvarez¹, Arben Merkoçi^{1,3} 1 Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, (ICN2), Barcelona, Spain 2 MackGraphe – Graphene and Nanomaterials Research Center, Mackenzie Presbyterian University, São Paulo, Brazil 3 ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain

Huanan Seafood Fi Wholesale market closed	11/01/202013/01/2020irst fatal caseWHO reports case in Thailand, the first outside China	30/01/2020 WHO declares outbreak a global health emergency	DNA polymerase probe dy fit i cit drippinted of i	65°C 15 min 4. Generation of dumbbell shaped DNA strand. 3' BIP Primer	Image: Second participantial y antibodies Image: Second participantial y antibodies <td< th=""></td<>
https://www.who.int/emergencies/diseases/novel-coror Size & Content Diameter: ≈100 nm Yolume: ~10 ⁶ nm ³ = 10 ⁻³ fL Mass: ~10 ³ MDa ≈ 1 fg Spike trimer Length: ≈10 nm Opies per virion: ≈100 (30 monomers, measured for SARS-CoVA Affinity to ACE2 receptor K _d : ≈1-30 nM pimed by TMPRSS2	ORF1a ORF1b Sample for the source of t	As of April 26, 2020	 e) Results f) e) results <lif) e)="" li="" results<=""> f) e) result</lif)>	 Visualization Expensive laboratory instrumentation; Requires trained operators; High cost. 	<section-header> change chan</section-header>
Membrane protein Nucleoprotein Envelope protein *2000 copies *1000 copies #20 copies (measured for (measured for (100 monomers, measured for TGEV coronavirus) Y. M. Bar-On et al. <i>eLife</i> (2020); 9:e57309 doi: 10.7554	Mutation rate: ~10 ⁻⁶ nt ⁻¹ cycle ⁻¹ (measured for MHV coronavirus) Replication Timescale in tissue-culture Virion entry into cell: ~10 min (measured for SARS-CoV-1) Eclipse period: ~10 hrs (time to make intracellular virions) Burst size: ~10 ³ virions (measured for MHV coronavirus) 4/eLife.57309	update, please scan the QR Code	 Turnaround time of 24-72 hours; Sensitivity of 50% - 79%, depending on the protocol used the sample type and number of clinical specimens collected; Expensive laboratory instrumentation; Requires trained operators. 	 Limitations Typically a qualitative test (positive of negative) for SARS-CoV-2 antibodies Usually less sensitive than ELISA L. Carter et al., ACS Cent. Sci. (2020) 6, 591 	

Electrochemical Biosensors Principles and Technologies

Electrochemical biosensors are usually divided in enzymatic or affinity biosensors * The first using enzymes to catalyze the transformation of the analyte in an electrochemically active specie detectable on electrodes with amperometric or voltammetric techniques.

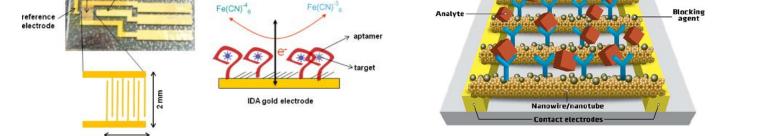
vantages:	Disadvantages:	
.ow-cost electrodes / zymes	 Temperature/pH- dependence 	
ndependent from analyte	 Delicate bio-receptor 	
lecular weight	 Redox mediator often 	
abel-free	required	
/ery specific antioselective)	 Stable functionalization difficult 	

Affinity biosensors transduce the binding of the analyte to specific bioreceptors on the electrodes surface using amperometric / voltammetric techniques or impedance / current variations.

Interdigitated array (IDA) electrode electrode		Advantages:	Disadva
	Bio-recognition (b)	✓ Label-free or labeled	o High b

Electrochemical COVID19 Biosensors - State of the Art

Graphene Field-Effect Transistor (FET)-Based Biosensing Device for Detecting SARS-CoV-2 Detection of SARS-CoV-2 spike protein and SARS-CoV-2 culture virus in clinical transport medium and clinical

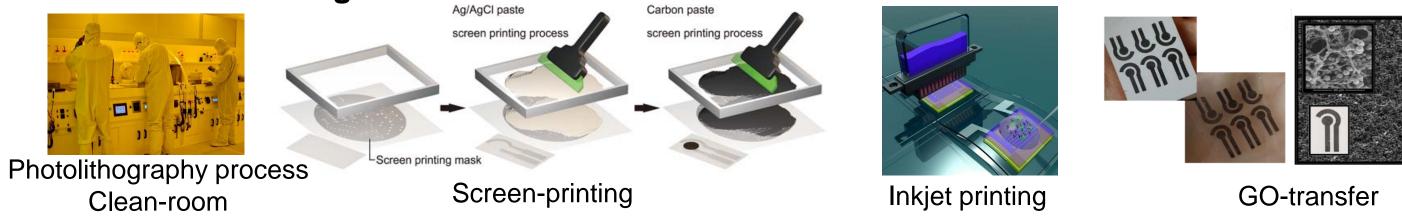

samples. SARS-CoV-2 spkie antibody COVID-19 patie SARS-CoV-2 virus COVID-19 FET sensor

Advantages

✤ High selectivity and sensitivity; Low time response (processing time around 1 min.) • Low voltage operation ($V_{DS} \sim 10 \text{ mV}$) ✤ Miniaturized device.

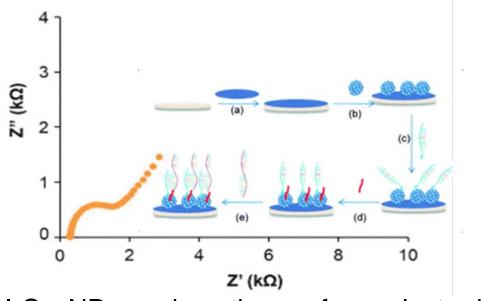
Challenges

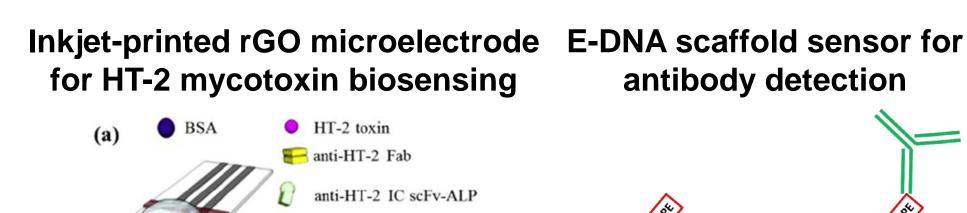
Clean room processing; ✤ High cost;


approach o Relatively high LOD ✓ Stable bioreceptors available • Often requiring expensive ✓ Ultra-high sensitivity (FETs) electrodes ✓ Mediator-free possible

vantages:

bioreceptors cost

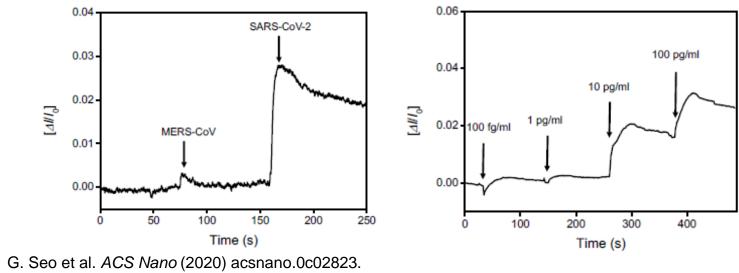

Impedance-based interdigitated aptasensors and nanowire-based immunosensors are well-known affinity biosensors.


Fabrication Technologies

Electrochemical Biosensors for Pathogen Detection

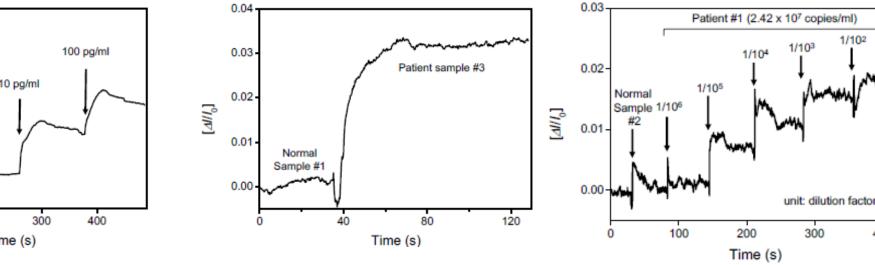
Impedimetric IrO₂ NP-Based **Platform for Leishmania Detection**

antibody detection


Graphene oxide Inkjet-printed electrodes; \therefore IrO₂ NPs makes the surface electrode ** smooth and highly conductive; Low cost and ease of scale-up biosensors; ✤ Detect up to 1000 times diluted PCR ✤ High sensitivity with detection limit of 1.6 amplified DNA; ng/mL; Mayorga et al. J. Mater. Chem. B (2015) 3, 5166.

J. Kudr et al. Biosensors and Bioelectronics (2020), 156, 112109

Single-step detection of antibodies in blood; Multiplexing capabilities:


MSCA - Premother C. Parolo et al. Microsyst. & Nanoengin. (2020), 6 (1) LOD of SARS-CoV-2 spike protein in nasopharyngeal clinical transport medium 100 fg/ mL;

✤ High selective to SARS-CoV-2;

Reduce noise signal in real samples.

✤ LOD of SARS-CoV- 2 virus patients 1:1×10⁵ (242 copies/ml)

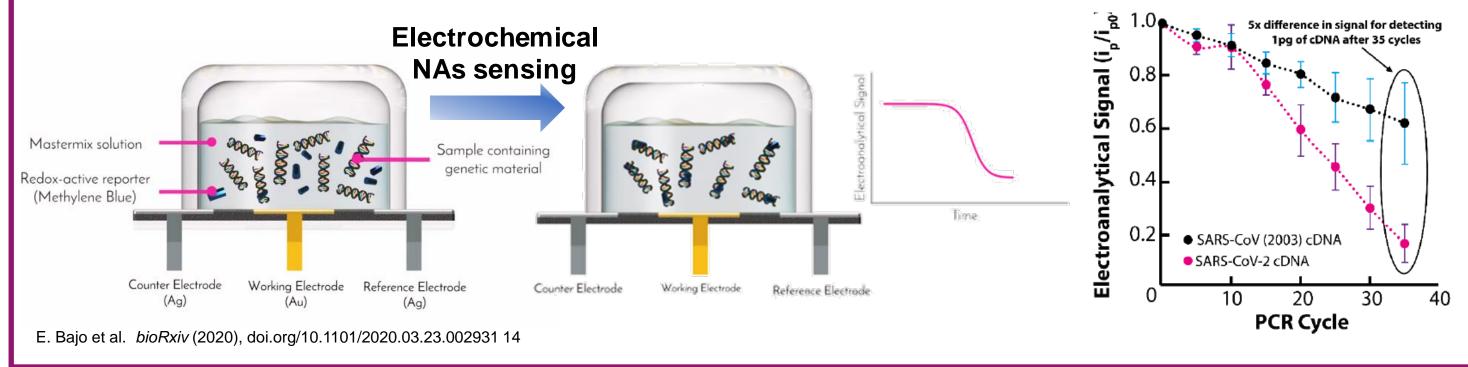
Ultra-Low-Cost Integrated Silicon-Based Transducer for Genetic Detection of SARS-CoV-2 RNA

Functions of TriSilix device: i) electrical (Joule) heater;

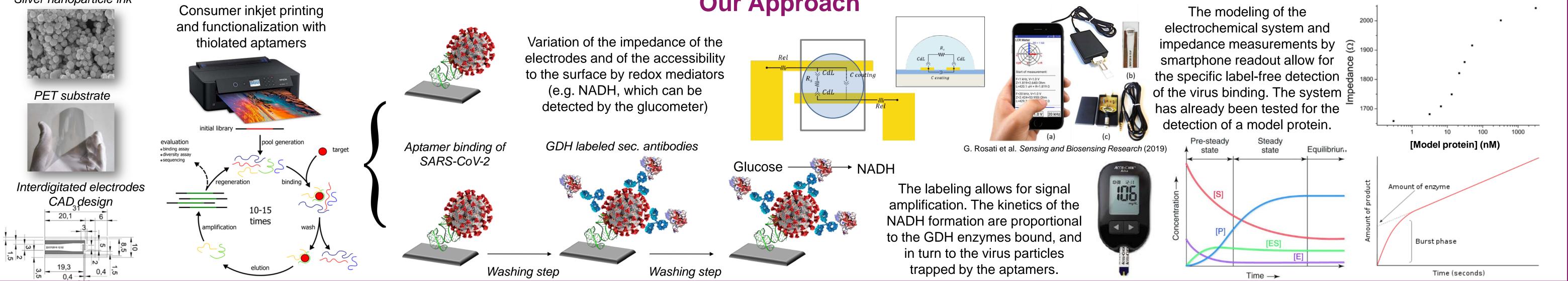
ii) temperature sensor (*i.e.* thermistor);

iii) electrochemical sensor for detecting target nucleic acids (NAs);

Real time detection of NAs by PCR in a Silicon chip,


based on electrochemical detection

Large scale fabrication: 4-inch Si wafer yields 37 TriSilix chips;


Fast manufacturing time (37 TriSilix chips in 7 hours);

Cleanroom-free low-cost fabrication (~US \$0.35 per device);

Detection of the cDNA from SARS-CoV-2 (1 pg) through PCR (lasting ~40 min)

Silver nanoparticle ink

Our Approach

CONTACT PERSON

Dr. Giulio Rosati

Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, (ICN2), Barcelona, Spain

giulio.rosati@icn2.cat

CONCLUSIONS AND ACKNOWLEDGMENTS

Electrochemical sensors, even if not massively present on the market are an extremely useful and effective tool for rapid and low-cost diagnostics. Integrated with telemedicine easy-to-use systems their potential for real-time diagnosis and monitoring is incredible. The first electrochemical systems for detection of SARS-CoV-2 are already present in several research laboratories but from our perspective, their interoperability with already existing readout systems is fundamental for a rapid deploy.

