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Objectives

% Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with severe memory loss and impaired
cognitive skills. A common pathological change found in AD-affected brains is the accumulation of a peptide named
amyloid-B (AB) that can form plaques.

% In this work, we design an organic electrochemical transistor (OECT) based chip for in vitro detection of AB aggregatesin

physiologically relevant media. This method incorporates the structural advantage of nanoporous membrane

functionalized with receptors and the confined detection unit owing to the microfluidic integration.

Working Principle of Biosensor

s The schematic of nanoporous membrane integrated microfluidic OECT and organic channels microscopy images.
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% The detection mechanism relies on the a Congo-red (CR) functionalized nanoporous membrane capturing AR
aggregates larger than the size of its pores and thus blocking the penetration of electrolyte ions into the channel
underneath, suppressingthe gating of the OECT.

» The OECT signal
depending on the concentration of
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AB aggregatesinthe solution.

D)

» Consequently, we measure a

L)

?& AP aggregates

*"CR-functionaIized
membrane

decrease in the total number of
cations that can enter the channel

Wh | Ch resu ltS | n Ch an g I n g d ra I n w/o membrane w/ membrane | w/ membrane & 2.21 pM A; Aggregates

Ve=0-0.6V
(AV4=0.05 V)

Vg=0-0.6V
(AV4= 0.05 V)

Vg=0-0.6V
(AV4= 0.05 V)

current (1), , transconductance

. E B B
(gM), and slower response time =} =2 =-2F
(T). -1 -1} -1t
0 : : : 0 0
-0.6 -05 -04 -0.3 -0.2 -0.1 0.0 -06 -05 -04 -03 -0.2 -0.1 0.0 -06 -05 -04 -03 -0.2 -0.1 0.0

Vp (V) Vp (V) Vg (V)

Electrical Characterization

Sensitivity of the Biosensor

% The transfer curve of the CR functionalized membrane integrated microfluidic OECT shows that a continuous

decrease inthe drain current andits transconductance with anincrease in the AB aggregates concentration.

* The CR-free, bare membrane, on the other hand, has no specific interactions with AB aggregates, leading to a device

response independent of protein concentration

¢ The calibration curve of our biosensor showing a linear response towards the AB aggregates in the range of 2.21 pM-

221nM.
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Response Time Changes of the Biosensor

s+ Theresponsetimes of the biosensorincreasestowards the highest concentration of AB aggregates.
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Impedance Changes of the Biosensor
»* We further performed electrochemicalimpedance spectroscopy measurements.
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Figure.a) Time response, b) bandwidth, and c) impedance characteristics of nanoporous membrane integrated microfluidic OECTs.

% The response times which gives the time for how fast the channel will be de-doped (doped) by injected (extracted) cations were

* The impedance of the system was also increased after the integration of CR conjugated nanoporous membrane on to the OECT.

measured. The presence of the membrane ontop of the channel decreases the current andincreases response time slightly.

Surface Characterization

** The nanoporous membrane has a pore size smaller than 50 nm and a surface functionalized with CR, i.e., a ligand with a

strong affinity to a cross- structure of AB aggregates

* To verify the presence of CR on the membrane surface and analyze the surface after each modification step, we carried out

SEM, and XPS measurements. The pore size slightly decreased after CR functionalization.The high-resolution of S2p, Ols

and Cls spectra of the surface after APTES modification and upon CR immobilization reveal significant differences in the

chemical composition of the membrane surfaces.
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* The changes in the AFM images of the membrane upon interactions with AB evidence that CR units capture the protein
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aggregates which then adsorb on the membrane surface
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¢ Torule out the possibility of the CR-functionalized membrane also interacting with the AB monomers, we monitored

the deviceresponse to abroadrange of peptide concentrations.
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2.0

. . . . . —e— Ap aggregates w/ CR 2.0 A: Glucose in PBS
with the peptide confirms the selectivity of the ' _e— Ap aggregates w/o CR B Alumin n PES__
sensortothe aggregate form of the protein. 1.5¢ AB peptide w/ CR -0 ["D: Cholesterol in PBS
. . . ~— E: AB aggregates in PBS T
s The device is also not responsive to molecules g | F: Human Serum (HS) |
. S 10 ) G: Ap aggregates in HS
which can clog the membrane pores because of o
. : : - <
their size, further evidencing that the specific 0.5
interactions of AP aggregates with CR s
. . . 00 = o 1 T
Ll S ) I AL BRI B AL BRI OO y y y y
essential for their detection. L2 T e g rad a7 A B C D E

AB in PBS (M)

Conclusions

» The microfluidic OECT integrated with a Congo-red functionalized nanoporous membrane shows a strong affinity for
AB aggregates.

» Combining the high transconductance of the OECT with the precise porosity and selectivity of the membrane, the
device detects the presence of AB aggregatesin physiologically relevant media with an excellent sensitivity

» This robust, low-power, non-invasive, and miniaturized sensor aids in the development of point-of care tools for early
diagnosis of AD

» Sensor performance will be tested with recombinant SARS-CoV-2 RBS (receptor binding domain of the spike protein)

fusion proteins as describedinthe literature.
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