Perovskite solar cells based on layered materials

Dr George Kakavelakis

Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK. Current affiliation: Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015 Switzerland. georgios.kakavelakis@epfl.ch

Metal halide perovskite solar cells (PSCs) are promising for low-cost (~50% price compared to Sibased PV) [1] solar power generation, due to their high efficiencies (~25%) [2] and their solution processability [3]. However, these highly efficient PSCs have low (<1000hours) continuous operational lifetimes in high temperature/humidity conditions (e.g. 85 °C and 85% R.H.) [4] and rely on metal current collectors (CCs) and expensive hole transporting layers (HTMs) [5]. Replacing the metal CCs with a solution processed material and avoiding the use of expensive HTMs can increase stability and throughput and further reduce cost and manufacturing complexity. In the first part of the talk, I will summarize the state of the art reports on the development of fully printable Carbon-based PSCs (CPSCs), while in the second part I will present our recent progress on fully printable CPSCs where we first reported the use of graphene ink based current collectors in CPSCs. We report a low temperature (<80 oC) curable perovskite-compatible high-pressure homogenized graphene ink with sheet resistance, R_s<5 Ohm/sg at 10µm and long-term stability in ambient conditions (>12 months). Fully printed PSCs are fabricated using this ink to print the CC. By optimizing the halide perovskite/HTMs/CC interface we get PSCs with average power conversion efficiency~16% %. Our devices satisfy ISOS-D1 and ISOS-D2 [6] long-term stability tests for >100 hours without any encapsulation layer to prevent oxygen/moisture diffusion, outperforming PSCs based on metallic CC [5,7]. This demonstrates that low-cost (due to the replacement of metallic CC and use of low cost HTMs and passivation layers), efficient, stable and fully printable devices can be achieved using highpressure homogenized graphene.

REFERENCES

- [1] H. J. Snaith, J. Phys. Chem. Lett., 4 (2013) 3623.
- [2] https://www.nrel.gov/pv/cell-efficiency.html
- [3] J. You et al. ACS Nano, 8 (2014) 1674.
- [4] T. Leijtens, et al. Adv. Energy Mater., 5 (2015) 1500963.
- [5] K. Domanski et al. ACS Nano, 10 (2016) 6306-6314.
- [6] A. Mei et al. Science, 345 (2014) 295; G. Grancini et al. Nat. Commun. 8 (2017) 15684.
- [7] M. O. Reese et al. Sol. Energy Mater Sol. Cells, 95 (2011) 1253.