Photoluminescence and Amplified Spontaneous Emission in Quasi-2D and 3D Perovskite: Influences of Excitonic Versus Free Carrier Emission

Yang Li

Isabel Allegro, Milian Kaiser, Aditya J. Malla, Bryce S. Richards, Uli Lemmer, Ulrich W. Paetzold, Ian A. Howard

Institute of Microstructure Technology & Light Technology Institute, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany yang.li2@kit.edu

Quasi-two-dimensional (2D) perovskites are promising optoelectronic materials for display and lighting technologies due to their excellent luminescent properties [1]. Light-emitting diodes (LEDs) based on quasi-2D emitters have demonstrated external quantum efficiencies over 20% [2]. Meanwhile, the recent demonstration of optically pumped continuous wave lasing at room temperature [3], giving quasi-2D perovskites front-runner status for realizing electrically driven lasers.

We investigate the photoluminescence (PL) and amplified spontaneous emission (ASE) of the quasi-2D emitter (CsPbBr₃ with 80% butylammonium bromide), and its 3D analogous formed by thermal removing the organic spacer (Fig 1a). Although the PL from the quasi-2D films is much brighter at low excitation power (Fig 1a), the ASE thresholds (600 µJ cm⁻²) of the quasi-2D materials tend to be higher than the 3D counterparts (130 µJ cm⁻²). This counter-intuitive behaviour is investigated through time-resolved photophysical studies, which reveal the emission in quasi-2D perovskite originated from the excitonic emission (Fig 1b). This accounts for its superior PL at low fluence, as the excitonic emission is efficient at low excited-state densities (Fig 1c). However, the 2nd order exciton-exciton annihilation of quasi-2D perovskite starts to take over the exciton dynamics at a low exciton density (<10¹⁶ cm⁻³), resulting in a low radiative efficiency at around transparency carrier density (10¹⁸ cm⁻³). Hence, to achieve the ASE in guasi-2D film, a much higher excitation fluence is necessary to increase the photon density in this low radiative efficiency regime. In contrast, the 2nd order free-carrier radiative recombination in 3D film leads to a high radiative efficiency steadily increasing to the transparency carrier density, which explains its lower ASE threshold. Through further examining the ASE thresholds of a series of quasi-2D perovskites with different 2D spacer content and type (i.e. 2-phenylethylammonium bromide and 1-naphthylmethylamine bromide), we highlight that guasi-2D perovskite gain materials should target fast free carrier recombination by engineering the thickness and size of QW, but not maximum PL quantum yields under low power excitation.

REFERENCES

- [1] L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, E. H. Sargent, Chem. Rev., 119 (2019) 7444–7477.
- [2] B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna, F. Auras, J. M. Richter, L. Yang, L. Dai, M. Alsari, X.-J. She, L. Liang, J. Zhang, S. Lilliu, P. Gao, H. J. Snaith, J. Wang, N. C. Greenham, R. H. Friend, D. Di, Nat. Photon., 12 (2018) 783–789.
- [3] C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara, C. Adachi, Nature, 585 (2020) 53–57.

FIGURES

Figure 1: (a) Transform from the quasi-2D into a 3D perovskite film through an annealing step (top). PL/ASE spectra of quasi-2D and 3D perovskite films (bottom). (b) Plots of PL₀ versus the pump energy densities. (c) Calculated radiative efficiency. The dash line indicates the transparency carrier density.

Halide Perovskites International Conference (2D-HAPES2021)