

Development of porous microwave-acid treated sepiolite /ZnO nanocomposite particles for potential ethylene scavenger application

Jéssica D. C. Santos^a, Tânia Frade^b, Moisés L. Pinto^b, Selçuk Yildirim^c, Idalina Gonçalves^a, Paula Ferreira^{a*}

^aCICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal

^bCERENA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

^cInstitute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland

pcferreira@ua.pt

Ethylene scavengers have been used to adsorb or decompose ethylene, a phytohormone responsible for inducing biochemical, physiological, and structural changes during the fruit ripening, in order to prolong the fruit shelf-life [1]. Natural porous clays, such as sepiolite, have been addressed as ethylene adsorbing matrices [2]. However, their low adsorption activity still compromise their broad application. Recently, an acid treatment of natural clays has been applied to increase their porosity [3]. On the other hand, ZnO has already demonstrated to have ethylene chemisorption activity [4]. Combination of acid treated clays and ZnO particles may enhance the ethylne adsorption kinetics and pave the way for different applications. In this work, the feasibility of using a microwave (MW)-assisted acid treatment to modify sepiolites and further assembling ZnO nanoparticles on their structure was explored. The influence of MW-assisted acid treatment and nano co-precipitation of ZnO on chemical, tructural, morphological, and ethylene scavenging properties of sepiolite was studied. Untreated sepiolite was used as control.

Sepiolite was chemically composed of SiO₂ 76.7 %, MgO 7.2%, K₂O 3.2%, P₂O₅ 3.0%, CaO 2.4%, and Al₂O₃ 1.7% (wt%). MW-acid treatment caused the depletion of Mg²⁺ from sepiolite octahedral sheets, which was confirmed by the progressive loss of FTIR bands attributed to magnesium species coordinated with -OH and H₂O, and the decrease of MgO content (3.2%) determinated by X-ray fluorescence. The modification of sepiolite sheets increased its specific surface area from 337 m²/g to 519 m²/g and pore volume from 0.404 cm³/g to 0.769 cm³/g. The posterior synthesis of ZnO on MW-acid treated sepiolite surface generated sepiolite/ZnO nanocomposite particles. X-ray fluorescence confirmed the presence of 17.1% ZnO, as expected by the amount of added ZnO precursors. STEM images revealed that ZnO nanoparticles synthesized without any clay support. The assembly of ZnO decreased the specific surface area (423 m²/g) and pore volume (0.613 cm³/g) of MW-acid treated sepiolite. These chemical and morphological changes affected the ethylene scavenging activity of sepiolite. Therefore, the simultaneous modification of sepiolite by MW-assisted acid activation and ZnO assembly revealed to be a suitable approach for obtained porous nanocomposite materials with higher specific surface areas than the commercially available, enhancing their potential for food packaging application.

Acknowledgments

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials (UIDB/50011/2020, UIDP/50011/2020 & LA/P/0006/2020) and CERENA research Unit (UIDB/04028/2020, UIDP/04028/2020), financed by national funds through the FCT/MEC (PIDDAC). FCT is also thanked for the Investigator FCT program (PF, IF/00300/2015) and Scientific Employment Stimulus program (IG, CEECIND/00430/2017). JS also thanks FCT for funding the SFRH/BD/145660/2019 grant. COST CA20126 is also acknowledged.

References

[1] Alver BE, Sakızcı M., Adsorption Science & Technology, 30 (2012)265-273.

[2] Vilela C, Kurek M, Hayouka Z, et al., Trends in Food Science & Technology, 80 (2018) 212-222.

[3] Venaruzzo JL, Volzone C, Rueda ML, Ortiga J., *Microporous and Mesoporous Materials*, 56 (2002) 73-80

[4] Kesavulu V, Narayana D, Lal J., The Journal of Physical Chemistry, 74(1970)4150-4155.