

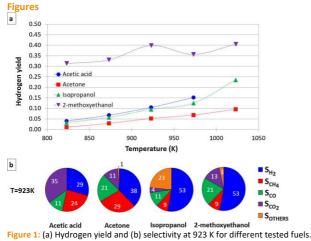
High yield hydrogen production enabled by macroporous silicon monoliths

Vega D.^a, Divins N.^b, Trifonov T.^a, Rodriguez A.^a, Llorca J.^b

a Department of Electronic Engineering, Universitat Politècnica de Catalunya, Campus Nord b Department of Chemical Engineering , Universitat Politècnica de Catalunya, Campus EEBE Contact@E-mail: angel.rodriguez@upc.edu

Abstract

A macroporous silicon (MPS) membrane of 210 μ m thickness was functionalized and evaluated for hydrogen production by steam reforming of various fuels. Performance is comparable to conventional reactors, but in a much compact device thanks to process intensification [1]. No blockage or damage was observed after extensive testing. MPS technology [2] is well suited for applications as demonstrated in [3], as it allows the fabrication of large arrays of regular pores in a silicon substrate. The fabricated samples consist of an array of ordered pores of 3.3 μ m in diameter and 210 μ m length, with a straight profile; the array periodicity is 4 μ m. The as-etched sample was post-processed to create an open membrane, and later, it was conformally covered with a CeO₂ film, which was then coated with a layer of RhPd nanoparticles. Different fuels were studied for hydrogen generation at high temperatures (up to 1023 K): ethanol, propanol, acetone, acetic acid, 2-methoxythanol, and a diesel surrogate [4]. Total tests duration was 80 h. The results show that no structural damage nor channel blockage is present. Results of H₂ production are shown in **Fig. 1**. The reaction hydrogen yield and selectivity show the best results for 2-methoxyethanol at 923 K, with 53% selectivity, $\theta_{H_2} = 0.4$ yield, and a H₂ production density of 110 L_N H₂/mL_{fuellin}. cm³_{act}.


Comparable results in hydrogen production with respect to conventional ceramic honeycombs have been obtained, but in a much smaller volume. Good performance was obtained and no damage or blockage was observed after extended testing, making this technology an outstanding candidate for energy production in embedded applications.

Acknowledgements

This work has been funded by project MICINN PID2021-124572OB-C31.

References

- [1] H.J. Venvik, J. Yang, Catal. Today 285 (2017) 135–146.
- [2] Lehmann, V., Thin Solid Films, 255(1) (1995) 1-4.
- [3] J. Llorca, A. Casanovas, T. Trifonov, A. Rodriguez, R. Alcubilla, J. Catal. 255 (2008) 228–233.
- [4] N. J. Divins, T. Trifonov, A. Rodríguez, J. Llorca, Catal. Today, 362 (2021), 55-61.

