

Influence of Flake Thickness and Environment on Heat Dissipation Capabilities of Suspended MoSe₂ Single Crystals

D. Saleta Reig¹, S. Varghese¹, R. Farris¹, A. Block¹, J. D. Mehew¹, O. Hellman², P. Wozniak³, M. Sledzinska¹, A. El Sachat¹, E. Chávez-Ángel¹, S. O. Valenzuela^{1,4}, N. F. van Hulst^{3,4}, P. Ordejón¹, Z. Zanolli⁵, C. M. Sotomayor Torres^{1,4}, M. J. Verstraete⁶, and K.-J. Tielrooij^{1,*}

 ¹Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST and CSIC, Campus UAB, 08193 Bellaterra (Barcelona), Spain. ²Dept of Molecular Chemistry and Materials Science. Weizmann Institute of Science, Rehovoth 76100, Israel.
³ICFO—Institut de Ciències Fotòniques, Mediterranean Technology Park, Castelldefels (Barcelona) 08860, Spain. ⁴ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain. ⁵Chemistry Department and ETSF, Debye Institute for Nanomaterials Science, Utrecht University, the Netherlands. ⁶Nanomat, Q-Mat, CESAM, and European Theoretical Spectroscopy Facility, Université de Liège, B-4000 Liège, Belgium.

david.saleta@icn2.cat

Transition metal dichalcogenides (TMDs) are layered, two-dimensional (2D) semiconductors which hold promises in future (opto)electronic devices. Importantly, 2D materials can be thinned down to the monolayer, typically with sub-nanometer thickness. Recently, thermal transport properties of TMDs have gained considerable attention because of their anisotropic nature [1]. However, a deep understanding of heat flow in TMDs is missing even though such understanding is crucial to fully exploit them in device applications [2]. In this work [3], we use Raman thermometry to systematically study the effects of flake thickness (0.7–50 nm) and its environment (vacuum, air or N₂) on the thermal transport properties of single-crystalline MoSe₂ flakes suspended over large, circular apertures (177 µm²). Our results suggest that, in vacuum, the in-plane heat flow has a similar thermal conductivity (κ) at 400 K in mono- and fewlayer flakes (~20 W/m/K), as in their bulk counterparts (~30 W/m/K). This is due to the appearance of low frequency (~0.1 THz) heat-carrying phonon modes that compensate for the decreasing contribution of interlayer phonon modes (~1 THz) in the thinnest TMDs. Owing to the surface-to-volume ratio increase with decreasing thickness, efficient out-of-plane heat transfer to air or N₂ molecules results in an apparent thermal conductivity (κ_{app}) enhancement of up to one order of magnitude (~200 W/m/K for monolayer flakes) [3]. These findings may provide clear pathways to engineer heat flow in (sub-)nanometer TMDs that are significantly thinner than the smallest state-of-the-art Si structures.

References

- [1] Kim, S. E., et al. Nature, 597 (2021) 660–665
- [2] Zhao, Y., et al. Adv Funct Mater, 30 (2020) 1903929
- [3] Saleta Reig, D., et al. Adv Mater. 34 (2022) 2108352

Figures

Figure 1: Raman thermometry experiment schematized in (a) vacuum and (b) air. A laser heats and monitors the temperature of a suspended flake to extract the thermal conductivity. A higher (lower) temperature corresponds to a less (more) efficient heat dissipation. (c) Optical images of the suspended few-layer MoSe₂ flakes studied in this work.