Graphene for detection and creation of terahertz light

Klaas-Jan Tielrooij1, Sebastián Castilla2, Bernat Terrés2, Marta Autore3, Rainer Hillenbrand3, Frank Koppens2, Hassan Hafez4, Sergey Kovalev5, Michael Gensch5, Dmitry Turchinovich4

1Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona Institute of Science and Technology (BIST), Bellaterra (Barcelona), Spain
2ICFO – The Institute of Photonic Sciences, Barcelona Insitute of Science and Technology (BIST), Castelldefels (Barcelona), Spain
3CIC NanGUNE, Donostia-San Sebastian, Spain
4Bielefeld University, Bielefeld, Germany
5Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

klaas.tielrooij@icn2.cat

The interaction between low-energy photons in the terahertz (THz) spectral range and graphene gives rise to a number of interesting physical phenomena that will likely become technologically relevant. As a first example, I will show our recent results on using graphene for detecting THz light [1]. We have demonstrated that the dominant mechanism that gives rise to a THz-induced photoresponse is the photo-thermoelectric effect: absorbed THz light leads to carrier heating in graphene, and if this happens at a pn-junction with an asymmetry in the Seebeck coefficients, this gives rise to an electrical photoresponse. We have developed a simple analytical model to describe this effect, and have used this to design and fabricate a novel, antenna-integrated, graphene THz photodetector. The detector (see Figure 1) exhibits excellent sensitivity (noise-equivalent power <100 pW/Hz1/2), and a very short switching time (<30 ns, setup-limited). Furthermore, it operates at room temperature and for a range of THz frequencies that is only limited by the antenna. These specifications make the device already commercially competitive. As a second example, I will mention the recent demonstration of highly efficiently generated THz harmonics (up to 7th order) [2].

References

Figures

Figure 1: (Left) Schematic layout of the main part of the THz photodetector, showing an H-shaped graphene channel on top of the central part of the antenna, with the antenna gap. Voltages \(V_L \) (\(V_R \)) are applied to the left (right) antenna branch, thus creating the pn-junction with asymmetric Seebeck coefficients (\(S_1 \) and \(S_2 \)), leading to a photo-thermoelectric photocurrent \(I_{PTE} \). (Right) Measured photocurrent, scanning the device through a THz focal plane. The observation of multiple fringes of the Airy pattern illustrates the high sensitivity of the device.