

High-yield spin devices with a long spin lifetime in chemical vapor deposited graphene

Z. M. Gebeyehu, S. Parui, J. F. Sierra, M. Timmermans, M. J. Esplandiu, K. Garello, M. V. Costache and S. O. Valenzuela

Catalan institute of nanoscience and nanotechnology, 08193 Bellatera, Barcelona, spain zewdu.messele@icn2.cat

Abstract

We demonstrate a high-yield fabrication of non-local spin valve devices with room-temperature spin lifetimes of up to 3 ns and spin relaxation lengths as long as 9 μ m in platinum-based chemical vapor deposition (Pt-CVD) synthesized single-layer graphene on SiO₂/Si substrates. The spin-lifetime systematically presents a marked minimum at the charge neutrality point, as typically observed in pristine exfoliated graphene. However, by studying the carrier density dependence beyond n ~ 10¹³ cm⁻², it is found that the spin lifetime reaches a maximum and then starts decreasing, a behavior that is reminiscent of that predicted when the spin-relaxation is driven by spin-orbit interaction. The spin lifetimes and relaxation lengths compare well with state-of-the-art results using exfoliated graphene on SiO₂/Si, being a factor two-to-three larger than the best values reported at room temperature using the same substrate [1]. As a result, the spin signal can be easily measured across 30- μ m long graphene channels. These observations indicate that Pt-CVD graphene is a promising material for large-scale spin-logic applications.

References

[1] M. V. Kamalakar, C. Groenveld, A. Dankert, and S. P. Dash, "Long distance spin communication in chemical vapour deposited graphene," *Nat. Commun.*, vol. 6, no. 1, p. 6766, Dec. 2016.

a, Optical image of a CVD graphene non-local spin device **b**, Non-local resistance R_{nl} *as a function of an in-plane magnetic field B_{\parallel} **c**, Spin precession measurements