

Cascade of superconducting domes and magnetic order in charge neutral and ¼ filled magic angle bilayer graphene

Xiaobo Lu¹, Petr Stepanov¹, Wei Yang¹, Ming Xie², Aamir Mohammed Ali¹, Ipsita Das¹, Carles Urgell¹, Kenji Watanabe³, Takashi Taniguchi³, Guangyu Zhang⁴, Adrian Bachtold¹, Allan MacDonald² and **Dmitri K. Efetov^{1*}**

¹.ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technol-ogy, Castelldefels, Barcelona, 08860, Spain

².Department of Physics, University of Texas at Austin, Austin TX 78712, USA

³.National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan

⁴.Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing,

100190,China

Dmitri.Efetov@icfo.eu

Superconductivity often occurs close to symmetry broken parent states, in particular when doping magnetically ordered states. Flat bands in Moire lattices in twisted bilayer graphene have emerged as a rich and highly tuneable model platform, where superconducting domes were found close to correlated insulating states at \pm ½ band filling, raising speculations of an unconventional pairing mechanism. Here we report on the fabrication of highly twist-angle homogeneous devices, which allow to resolve correlated states at all integer fillings \pm ¼, \pm ¼, \pm ¾ of the four-fold spin and valley degenerate Moire band, and a gapped insulating state at charge neutrality. We find an enhanced critical temperature of ~ 3 kelvin of the superconducting dome close to -½ filling, and strikingly we observe three new superconducting domes at much lower temperatures, when slightly doping the charge neutral point and the \pm ¼ filled correlated states. Interestingly, the weakly pronounced -¼ correlated state shows a sharp hysteretic resistance enhancement when a perpendicular magnetic field above 3.6 tesla is applied, consistent with a field stabilized magnetically ordered state. Overall, our study shows that symmetry broken and superconducting states occur not only around half-filling, but are common across the entire Moire band, including charge neutrality. The co-existence of superconductivity and magnetic order in the - ¼ correlated states points to-wards a possible pairing mechanism. (in preparation)

References

Figure 1: Superconductivity and correlated states in magic angle graphene.