

## Vertically Aligned Carbon Nanotubes grown on Graphite Paper Electrodes for Highly Flexible Supercapacitors

Islam Alshaikh<sup>1,2</sup>, Roger Amade<sup>1,2</sup>, Fernando Pantoja-Suárez<sup>1,2,3</sup>, Enric Bertran-Serra<sup>1,2</sup>

<sup>1</sup>FEMAN Group, Dep. Applied Physics, Universitat de Barcelona, C/Martí I Franquès, 1, 08028 Barcelona, Spain <sup>2</sup>Institute of Nanoscience and Nanotechnology, Universitat de Barcelona. <sup>3</sup>Department of Materials, Escuela Politécnica Nacional, Ladrón de Guevara, E11-253, Quito, Ecuador iralshaikh@ub.edu

## Abstract

Carbon nanotubes (CNTs) are being extensively investigated for electrochemical applications. Among the multiple techniques used to grow the CNTs for specific applications, like supercapacitor electrodes, we have precisely tuned the parameters of plasma enhanced chemical vapor deposition (PECVD) for growing vertically aligned CNTs (VACNTs), each one electrically connected to a 0.20 mm thick and highly flexible PAPYEX<sup>®</sup> graphite foil N998. Iron (Fe) thin film was used as a catalyst to grow the CNTs. Catalyst thickness, annealing temperature and PECVD time were also explored. Optimum conditions were found to be 2 nm of Fe film thickness, 750°C of annealing temperature and 15 min of PECVD process. To increase the hydrophilicity and to remove the amorphous carbon generated during the deposition of the CNTs, samples were treated by  $O_2$  plasma. Raman spectra showed that the CNTs become more crystallyne after functionalization with  $O_2$  plasma (Figure 1). Electrochemical characterization was carried out for the obtained CNTs. MnO<sub>2</sub> nanoparticles were deposited on the CNTs (Figure 2) to increase the areal capacitance from 22.5 mF/cm<sup>2</sup> to 40.2 mF/cm<sup>2</sup> at a scan rate of 10 mV·s<sup>-1</sup>.

## References

- [1] Yiran Yan et al., Carbon, 142 (2019) 238-244.
- [2] Serkan Akbulut et al., Diamond & Related Materials, 74 (2017) 222-228.
- [3] M. S. Dresselhaus et al., Physics Reports, 409 (2005) 47-99.

## **Figures**





Figure 1: Raman specta of CNTs over graphite paper before and after  $O_2$  functionalization.

Figure 2: SEM image of VACNTs over graphite paper.