Structure-function guided fabrication of biodegradable polymers

Moran Frenkel-Pinter^{1,2}, Yishi Ezerzer¹, Rotem Edri¹, Daniil Akulenko¹, Eliav Marland¹, Miryam Sapir¹, Omer Agazani¹, and Meital Reches^{1,2}

¹Institute of Chemistry, The Hebrew University of Jerusalem, Israel 91904

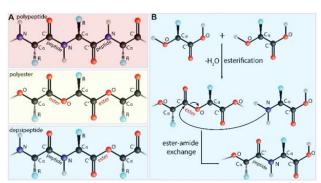
²The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel 9190401

moran.fp@mail.huji.ac.il

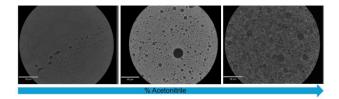
Abstract

Peptides are biologically derived molecules that are widely used in a variety of applications, such as therapeutics, catalysis, cosmetics, and as food additives. Depsipeptides, which are polymers composed of both ester and peptide linkages (Fig. 1A), are peptide analogs and are known to be nontoxic and degradable both in vitro and in vivo, thus synergizing from the combined property of both peptides and esters. Their amide groups allow the establishment of strong intermolecular hydrogenbond interactions, which enhance their mechanical and thermal properties, while allowing controlled biodegradability due to the presence of easily hydrolyzable ester groups. Indeed, depsipeptides have already shown great promise for biomedical applications such as tissue engineering and drug delivery. More recently, we have shown that cationic depsipeptides bind to and stabilize nucleic acid, properties which can be utilized for controlled drug release and controlled degradation rates.

been recently demonstrated depsipeptides can form spontaneously under mild conditions during drying of mixtures of hydroxy acids and amino acids. Ester linkages diminish kinetic barriers to amino acid condensation by lowering activation energies for the formation of amide bonds through the process of ester-amide exchange (Fig. However, it was unknown 1B). whether depsipeptides form assemblies in an aqueous environment similarly to peptides and proteins. To assembly propensity of different synthesized depsipeptide backbones. depsipeptides using a matrix of eight alpha- and beta- hydroxy acids and six alpha-, beta-, and gamma- amino acids. The reaction products were analyzed by microscopy and a physical stability analyzer to study assembly formation as well as various analytical techniques for chemical analysis.


Our results demonstrate assembly formation in depsipeptide systems containing hydrophobic hydroxy acids and indicate that depsipeptide assemblies containing alpha hydroxy acid backbones are significantly more stable than beta analogs. We now utilize these novel peptide-like molecules to study their potential biological

activities, such as antimicrobial activity and enzymatic functions. We expect this research to pave the way for developing potent novel biodegradable drugs using green chemistry approaches.


References

- [1] Fisher S[‡], Ezerzer Y[‡], Edri R, Ekulenko D, Marland E, and Frenkel-Pinter M* (2025). Protopeptide backbone affects assembly in aqueous solutions. Proceedings of the National Academy of Sciences; 122 (40) e2500503122
- [2] Frenkel-Pinter M, Haynes JW, Mohyeldin AM, C M, Sargon AB, Petrov AS, Krishnamurthy R, Hud NV, Williams LD* and Leman LJ* (2020). Mutually Beneficial Interactions Between Proto-Peptides and RNA. Nature communications; 11(1):3137. doi: 10.1038/s41467-020-16891-5

Figures

Figure 1. A) Polypeptide, polyester and depsipeptide. B) Depsipeptide formation is preceded by an ester that undergoes ester-amide exchange. Ester-amide exchange, shown here, is one of the possible mechanisms of polymer shuffling.

Figure 2. Solvent effect on structure formation of products resulting from dry-down of lactic acid and glycine for one week at 85 °C as evident in bright field microscopy imaging. Different ratios of water:acetonitrile solutions were used to resuspend the dry samples.