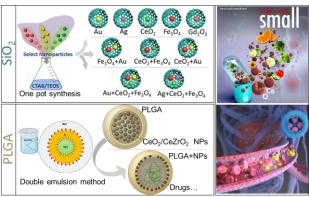
## Engineered CeO<sub>2</sub>-Based Nanozymes for Multifunctional Oxidative Stress Regulation and Therapeutic Applications

Muling Zeng¹, Chuanli Zhang¹, Juan Pellico¹, Eudald Casals², Gregori Casals³, Guillermo Fernández-Varo³ and Anna Roig¹¹Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Spain. ²Premium Research SL, 19003, Guadalajara, Spain. ³Department of Biochemistry and Molecular Genetics, Hospital Clínic, FRCB-IDIBAPS, CIBEREHD, Barcelona.


mzeng@icmab.es

Nanozymes are engineered nanomaterials with enzyme-like catalytic properties that offer greater stability, lower production costs, and broader environmental adaptability than natural enzymes, enabling diverse biomedical, environmental, and industrial applications.[1] The global nanozyme market is expected to grow from \$5.13 billion in 2024 to \$57.95 billion by 2034.[2] Among them, cerium oxide (CeO<sub>2</sub>) nanozymes are particularly notable for their unique redox-switching ability between Ce3+ and Ce4+, which imparts strong proand anti-oxidant activities. However, their practical application faces significant challenges, including the need for protective systems to maintain catalytic activity, prevent degradation or aggregation during circulation, and enable efficient targeted delivery.[3] Here, we developed two platforms using FDAapproved materials - one inorganic (silica) and one organic poly(lactic-co-glycolic acid) (PLGA)[4-5] - to encapsulate CeO<sub>2</sub>-based nanozymes, providing enhanced stability, protection, and targeted functionality.

Firstly, we established a scalable platform for the synthesis of mesoporous nanosilica (69 ± 9 nm) encapsulating CeO2-based nanozymes under roomtemperature and ambient conditions. This strategy is readily adaptable for the incorporation of diverse nanoparticles.[6] The mesoporous silica coating significantly enhances the stability and catalytic activity of CeO<sub>2</sub> nanozymes in various simulated body fluids while preserving their intrinsic enzymelike reactive oxygen species (ROS)-scavenging properties. [7] When applied to a liver fibrosis model, silica-coated CeO<sub>2</sub> mesoporous nanozymes exhibited combined lipid-lowering and antioxidant sustained activities. producing metabolic improvements in obese Zucker rats.[8] Moreover, coloading with the natural compound guercetin synergistic ROS modulation downregulation of inflammatory cytokines, further expanding the therapeutic potential of this versatile nanoplatform.[9]

To gain a comprehensive understanding, we introduced PLGA as an organic matrix (in contrast to the inorganic silica) and successfully employed a

double-emulsion method to synthesize two types of PLGA nanoparticles (270 ± 15 nm) incorporating a CeO<sub>2</sub> system. This modular strategy enables the development of multifunctional nanomaterials with synergistic catalytic, imaging, and therapeutic properties. To further enhance ROS-scavenging capacity, zirconium (Zr) was doped into the CeO2 lattice to form CeZrO<sub>2</sub> nanoparticles with optimized Ce/Zr ratios.[10] Preliminary results reveal that a Ce:Zr ratio of approximately 7:3 nearly doubles the ROS-reducing activity compared with undoped CeO<sub>2</sub>, providing an additional way for fine-tuning catalytic performance. These engineered materials are being explored for potential application in the diagnosis and treatment of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), a condition affecting over 25% of people worldwide that can progress to severe liver damage and hepatocellular carcinoma (HCC) in some cases.



**Figure 1.** Two proposed platforms - one inorganic (silica, top) and one organic (poly(lactic-co-glycolic acid), PLGA, bottom) - to encapsulate  $CeO_2$ -based nanozymes.

## References

[1] Sen A., Oswalia J., Yadav S., Vachher M., Nigam A., *Current Research in Biotechnology*, 7(2024) 100205.

[2] Market Research Future, (2024), Nanozyme market size, share, outlook insights 2034.

[3] E Casals, M Zeng, M Parra-Robert, G Fernández-Varo, M Morales-Ruiz, W Jiménez, V Puntes, G Casals, *Small*, 16 (2020) 1907322.

[4] Zhang Y, García-Gabilondo M, Grayston A, Feiner IVJ, Anton-Sales I, Loiola RA, Llop J, Ramos-Cabrer P, Barba I, Garcia-Dorado D, Gosselet F, Rosell A, Roig A, *Nanoscale*, 8(2020)4988-5002.

[5] Tng DJH, Low JGH, *Antiviral Research*, 210(2023) 105488.

[6] M Zeng, Y Shu, M Parra-Robert, D Desai, H Zhou, Q Li, *Materials Science and Engineering: C*, 128(2021) 112272.

[7] M Zeng, X Zhang, J Tang, X Liu, Y Lin, D Guo, Y Zhang, *Nanoscale*, 15(2023) 14365-14379.

[8] M Parra-Robert, M Zeng, Y Shu, G Fernández-Varo, *Nanoscale*, 13(2021) 8452-8466.

[9] S Zhou, Y Zhang, E Casals, M Zeng, M Morales-Ruiz, *International Journal of Nanomedicine*, 20(2025) 8191–8207.

[10] J van Gent, A Roig, *Nanoscale*, 15(2023) 13018-13024.