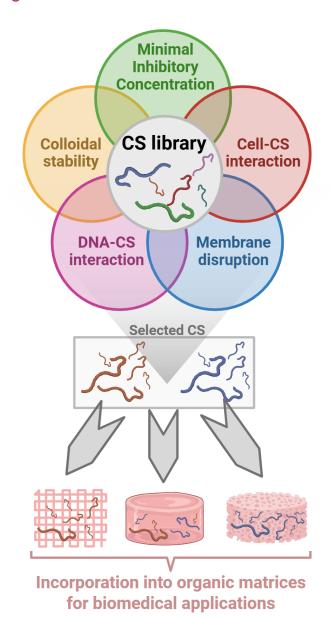
Chitosan-containing composites for biomedical applications

Asier R. Muguruza¹, Liquiong Li^{1,2}, Carlos López-Orts¹, Sergi Diaz¹, Rafael Contreras-Cáceres², Anna Laromaine¹, Anna Roig¹, Pablo Guardia¹ Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus of the UAB, 08193 Bellaterra, Spain ² Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Almería 04120, Spain


arodriguez4@icmab.es

Microbial infections are the cause of more than 275.000 deaths yearly in Europe, and over 1.41 deaths worldwide.[1] Developing antimicrobial materials is vital to combat microbial propagation and subsequent infections. Chitosan (CS) is a well-known biopolymer with antimicrobial properties governed by its molecular weight, degree of deacetylation, chemical functionalization, and origin. Furthermore, it is considered a waste product of several food industries, whose repurpose would contribute to circular economy. However, Chitosan lacks solution stability and processability to obtain final products.[2,3] A substantial effort has been made to identify the best characteristics for an antimicrobial CS; nevertheless, the lack systematic methodology has hindered this aim. The antimicrobial mechanisms postulated cellular membrane comprise disruption and interaction with intracellular macromolecules (DNA, RNA, enzymes, etc)[4]. Thereby, we systematically evaluated the antimicrobial activity and mechanism of action of a library of CS via a range of molecular, optical, and microbiological assays against reference bacterial (S. aureus, E. coli, and P. aeruginosa) and fungal (C. albicans) species to identify the best features. In addition, C. elegans was employed as in vivo model to study the biocompatibility of the CS compounds that displayed antimicrobial activity.[5] Finally, active CSs were incorporated in different organic matrices for various biological applications (Figure 1), including antimicrobial dressings, wound healing or 3D scaffolds with promising results.

References

- [1] GBD 2021 Antimicrobial Resistance, The Lancet, 404 (2024) 1199 -1226.
- [2] D. Raafat, H.-G. Sahl, Microb. Biotechnol., 2 (2009) 186-201..
- [3] H. Amiri, M. Aghbashlo, M. Sharma, J. Gaffey, L. Manning, S. Masaud, M. Basri, J. F. Kennedy, V. K. Gupta, M. Tabatabei, Nature Food, 3 (2022), 822-829.
- [4] D. raafat, K. von Bargen, A. Hass, H.-G. Sahl, Appl. Environ. Microbiol., 74 (2008), 3864-3773.
- [5] A. R. Muguruza, L. Li, C. López-Orts, F. M. Arrabal Campos, R. Contreras-Cáceres, A. Laromaine, A. Roig, P. Guardia, under review.

Figures

Figure 1. Scheme of the screening and incorporation of antimicrobial CSs into organic matrices.