Development of advanced genetic tools in combination with nanovectors for T-cell engineering

Ludovica Rizzo^{1,*}, Bruna My^{1,*}, Andrea Lia², Gabriella Leccese², Gabriele Maiorano², Ilaria E. Palamà², Antonio Galeone² and Giuseppe Gigli^{2,3}

¹Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy

²Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy

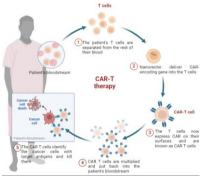
³Department of Experimental Medicine, University of Salento, Monteroni Street, 73100 Lecce, Italy *These authors equally contributed to this work

ludovica.rizzo@unisalento.it

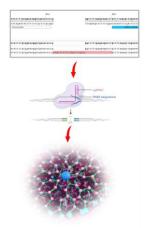
Gene therapy has evolved into a powerful tool for cancer treatment (fig.1). Although viral vectormediated gene therapies are the most widely used due their high transfection efficiency, safety risks immunogenicity still make their questionable [1]. Meanwhile, non-viral vector could bypass the intrinsic limitation of viral vector as they offer higer biosafety and simpler large-scale production methods [2]. Despite these potentials, several obstacles to their applications are still present, thus limiting their clinical applications. In their inefficient nuclear targeting particular, represents a critical issue, mainly due to inevitable trapping in lysosomes with subsequent degradation. For this reason, several strategies have been adopted in order to overcome the low gene expression of non-viral nanovectors. In this context, the aim of our research is the design and validation of biocompatible, non-viral gene vectors able to the CRISPR/Cas9 biomacromolecular machine for editing target genes by ensuring targeting, uptake and lysosomal escape (fig.2). This is made possible by the use of a polymeric nanocarrier named CAS-NV based on the proper assebly of cystamine as stimuli responsive mojety, agmatine [Agm] for the binding of nucleic acids, and benzenesulfonamide [BS]derivative for specifically targeting the endoplasmic reticulum (ER). By this strategegy, three functional domains aim to improve issues encountered during transfection (fig.3). BS promotes the binding of complexes to the endoplasmic reticulum which, being the organelle closest to the nucleus, contributes to the nuclear uptake of genes. Agm is

involved in the binding of the biologically active cargo, and, additionally, in the lysosomal escape, while cystamine acts as a glutathione GSH-sensitive linker to control the release of CRISPR/Cas9 payload, as high intracellular levels of GSH cause a sensitive disruption of disulphide bonds, resulting in gene release in a controlled manner [3]. The polymer was synthesised using a Michael addition and finally analysed using different techniques. The polymer thus obtained was used to complex a plasmid coding for Cas9 that was named 'Multiplex', into which we cloned two single guides RNA (sgRNAs) that direct the Cas9 nuclease against the Regnase-1 and PCD1 genes respectively. These are two crucial master genes in immune activation, involved in T-cell exhaustion, a dysfunctional state in which T-cells show low persistence in circulation and at the tumour site. Editing these genes should alter the expression of factors involved in modulating Tcell activity, inducing a downregulation of their cell cycle, reducing proliferation and, consequently, increasing persistence at the tumour site, thus improving therapeutic efficacy [4]. The non-viral CRISPR/Cas9 nanocarriers generated have been characterized by employing different techniques. First results indicate that the proper design of nonviral gene vectors could pave the way for new advanced approaches in cancer immunotherapy also allowing the intrinsic obstacles of intracellular pathways to be circumvented, making it a promising tool in gene therapy (Fig. 4) [5].

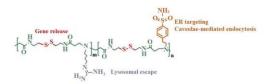
Acknowledgements


TecnoMed Puglia; EU funding PNRR Projects n. CN00000041 CN3 RNA; LSH-TA PNC-E3-2022-23683269; Project "Biotecnologia, Bioinformatica e Sviluppo farmaceutico" POS 2014-2020, Tract 4, Azione 4.1- Cod. T4-AN-01.

References


- [1] Penaud-Budloo M., François A., Clément N., Ayuso E. Molecular Therapy Methods & Clinical Development (2018), Pharmacology of Recombinant Adeno-associated Virus Production. 8, 166–180. https://doi.org/10.1016/j.omtm.2018.01.002].
- [2] Sharma, D.; Arora, S.; Singh, J.; Layek, B. International Journal of Biological Macromolecules (2021), A review of the tortuous path of nonviral gene delivery and recent progress. 183, 2055–2073. https://doi.org/10.1016/j.ijbiomac.2021.05.192
- [3] Lian-Yu Qia, Yi Wanga, Li-Fan Hua, Pu-Song Zhaoa, Hao-Yuan Yua, Lei Xinga, Xiang- Dong Gaob, Qing-Ri Caoe, Hu-Lin Jianga. Journal of Controlled Release (2022), Enhanced nuclear gene delivery via integrating and streamlining

- intracellular pathway. https://doi.org/10.1016/j.jconrel.2021.11.046.
- [4] WentingZheng, Jun Wei, Caitlin C. Zebley, Lindsay L. Jones, Yogesh Dhungana, Yong-Dong Wang, JayadevMavuluri, LingyunLong, Yiping Fan, Ben Youngblood, Hongbo Chi and Terrence L. Geiger, Blood (2021), Regnase-1 suppresses TCF-11 precursor exhausted T-cell formation to limit CAR-T-cell responses against ALL. VOLUME138,NUMBER 2.
- [5] Lian-Yu Qia, Yi Wanga, Li-Fan Hua, Pu-Song Zhaoa, Hao-Yuan Yua, Lei Xinga, Xiang- Dong Gaob, Qing-Ri Caoe, Hu-Lin Jianga, Journal of Controlled Release 341(2022)511–523, Enhanced nuclear gene delivery via integrating and streamlining intracellular pathway.



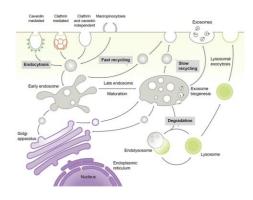

Figure 1. Representation of the production and administration of CAR-T therapy.

Figure 2. Cloning of the single guide RNA for CRISPR/Cas9 system in a plasmid vector to be encapsulated in polymeric nanocarriers.

Figure 3. Illustration of CAS-NV gene vector, with the respective functions of the domains of which it is composed.

Figure 4. Targeted ER strategy to improve gene transfer and simplify non-viral vector-based gene transfection [The Dynamic Nature of the Nuclear Envelope Paola De Magistris and Wolfram Antonin Current Biology 28, R487–R497, April 23, 2018^a Elsevier Ltd].