Bismuth-Enhanced Silicon Nanowires: Exploring Their Antimicrobial Potential

Mariem Naffeti ^{1,2,3,} *, Rosa Ana Ramírez-Jiménez^{1,4}, Radhouane Chtourou², Pablo Aitor Postigo⁵, Maria Rosa Aguilar^{1,4}, Luis Rojo^{1,4,*}

- ¹ Institute of Polymer Science and Technology (ICTP), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
- ² Laboratory of Nanomaterials and Systems for Renewable Energies (LaNSER), Research and Technology Center of Energy, Techno-Park Borj-Cedria, Tunis, Tunisia
- ³ Tunis University—National High School of Engineering of Tunis, 5 Av Taha Hussein 1008 Tunis, Tunisia
- ⁴ Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
 - ⁵ The Institute of Optics, University of Rochester, Rochester, New York 14627, USA

Contact@E-mail naffeti.mariam2@gmail.com; rojodelolmo@ictp.csic.es

Abstract

Targeted eradication of bacteria using nanomaterials has gained prominence as a solution to antibiotic-resistant microorganisms. A synergistic hybrid structure, integrating nanostructured surfaces with nanowire arrays and plasmonic metal nanoparticles, represents a promising approach. In this context, this study focuses on the functionalization of silicon nanowires (SiNWs) with bismuth nanoparticles (BiNPs) to design a novel and cost-effective antibacterial agent. High-density needle-like SiNWs were synthesized via metal-assisted chemical etching, with BiNPs anchored through thermal evaporation. Morphology, elemental composition, and structural analysis confirmed the formation of the BiNPs@SiNWs nanocomposite. The hydrophilic nature of BiNPs@SiNWs facilitates antifouling by reducing bacterial contamination. These nanocomposites exhibit near-perfect absorbance, reaching 99%, particularly in the near-infrared range overlapping with three biological windows, promoting reactive oxygen species (ROS) generation and efficient photothermal effects that harm bacteria. The antibacterial properties against gram-negative Escherichia coli and gram-positive Staphylococcus epidermidis were assessed using colony-forming units, fluorescence staining, and scanning electron microscopy, revealing impressive bacteriostatic effect and bactericidal rates of 96% and 99%, respectively. The mechanisms underlying these effects were thoroughly elucidated, showing sustained efficacy across multiple cycles. BiNPs@SiNWs display significant potential as a novel and efficient antibacterial agent for diverse biomedical applications.

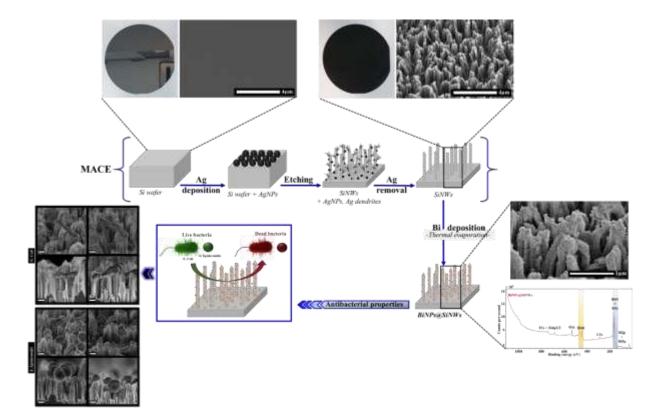


Figure 1. Bismuth-coated silicon nanowires composite as an efficient antibacterial agent