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Abstract (Arial 10) 
 
Different metallic materials have been used as 
biomaterials for the manufacture of medical 
implants. Commonly used metallic biomaterials 
include stainless steel, pure titanium, titanium-
aluminum-vanadium-based alloys and cobalt-
chromium-molybdenum-based alloys [1–5]. The 
advantages of biodegradable Mg-based implants [6–
8] lie in their mechanical and electrochemical 
properties. Mg is a lightweight metal with a density 
of 1.74 g cm −3 versus 7.9 g cm −3 for Al and 4.5 g 
cm −3 for Ti. Moreover, Mg presents an elastic 
modulus and compressive yield strength closer to 
those of natural bone [9]. In addition, Mg is a 
biocompatible material naturally found in the human 
body (approximately half of the total physiological 
Mg is stored in the bone tissue) [10]. Setbacks when 
using Mg as metallic material for biomedical 
applications are related to its low corrosion 
resistance under the physiological conditions [9] and 
the excessively rapid production of hydrogen gas 
during the in-vivo corrosion [11]. The first issue 
could lead to both a rapid loss of its mechanical 
properties and severe problems in tissue 
regeneration, and the second, to harmful effects 
during the tissue healing process. One of the most 
recent studies dedicated to slowing down the 
dissolution of magnesium in saline conditions was 
performed on samples of magnesium foam 
manufactured using the replication method from 
carbon spheres as a template. The heat treatment in 
air flow at 540 °C applied to burn the template 
particles generated a layer of oxide on the surface of 
the foam which notably slowed down its dissolution 
at 37 °C in an aqueous solution containing 3 wt % 
NaCl that had a pH of 7.4 (a pH closed to that of the 

human body) [12]. Other surface modifications that 
were proved to be successful in slowing the 
corrosion rate of magnesium were fluoride 
conversion coatings, phosphate treatments or 
chemical deposition of hydroxyapatite and 
octacalcium phosphate [13]. 
Moreover, it has been proved that both graphene 
oxide (GO) and reduced graphene oxide (RGO) 
show anti-corrosion properties when coated onto 
metal substrates [14–19]. The syntheses of the 
different graphene-metallic substrate specimens 
were carried out following both electrochemical [20–
22] and chemical [23,24] methods. 
 
The synthesis of reduced graphene oxide onto 
magnesium discs by electrochemical and chemical 
methods is presented in this work. The surface 
morphology and atomic composition were 
investigated using field emission scanning electron 
microscopy and energy dispersive X-ray 
spectroscopy. The corrosion rate of different 
samples was analyzed in physiological saline 0.9 wt 
% NaCl solution by potentiodynamic polarization, 
electrochemical impedance spectroscopy and 
scanning electrochemical microscopy. As a result of 
the different treatments, a progressive decrease in 
the corrosion rate of the magnesium disc in the 
corroding environment was obtained, reaching up to 
80% of reduction for the chemically modified 
sample. 
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