Controlling Cellular Trafficking by Nanoparticle Avidity: From Endocytosis to Transcytosis

Diana M. Leite¹,

Xiaohe Tian², Edoardo Scarpa¹, Joseph Forth¹, Diana Matias¹, Loris Rizzello^{3,4}, Manish R. Vuyyuru^{5,6}, Andela Šarić^{5,6}, Giuseppe Battaglia ^{1,3,4}

¹Department of Chemistry, University College London, London, United Kingdom; ²School of Life Sciences, Anhui University, Hefei, Peo-

ple's Republic of China; ³Institute for Bioengineering of Catalonia (IBEC), The

Barcelona Institute for Science and Technology (BIST), Barcelona, Spain;

⁴Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; ⁵Department of Physics and Astronomy;

⁶Institute for the Physics of Living Systems, University College London, London, United Kingdom.

diana.leite@ucl.ac.uk

Drug delivery to the brain is hindered by the presence of the blood-brain barrier (BBB), which consists in specialised endothelial cells that line brain capillaries restricting movement of molecules from bloodto-brain. Nonetheless, brain endothelial cells (BECs) rely on endogenous transport mechanisms (such as, receptors) that allow certain molecules to transverse the BBB. By using Angiopep-2(AP2)-decorated pHsensitive polymersomes, we previously demonstrated the ability to specifically target lipoprotein receptor-related protein-1 (LRP-1) at the surface of BECs, and trigger transcytosis allowing the delivery of macromolecules into the brain parenchyma [1]. Here, we explore the mechanism of transcytosis of the polymersomes as a function of the number of AP2 ligands (i.e., avidity) using an established in vitro BBB model as well as in vivo.

AP2-poly(oligo(ethylene glycol) methyl ether methacrylate)-block-poly((diisopropylamino) ethyl methacrylate) (POEGMA-PDPA) polymersomes showed binding to LRP-1 in BECs, and significantly higher levels of apparent permeability (2.5-folds) compared to unfunctionalised polymersomes. When decorated with different numbers of AP2 ligands (I = 16 to 82), the rate of transport across a bEnd3 monolayer is affected, with the highest efficiency observed for 16 AP2 per polymersome. At the density of I = 16, the overall affinity of the nanoparticle triggers transcytosis by the formation of tubular structures, as demonstrated by live cell imaging and molecular dynamic modelling simulations. Cellular trafficking of AP2 polymersomes, I = 16 and I = 82, illustrated that, depending on the number of ligands, polymersomes undergo distinct intracellular sorting in BECs. After a tail vein administration of the polymersomes, 3.82% of the injected dose was obtained in the brain for the polymersomes with *I* = 16 which is significantly higher than unfunctionalised polymersomes, I = 80 AP2-functionalised polymersomes and AP2.

Together, these results elucidate the impact of the density of AP2 ligands on the intracellular trafficking of POEGMA-PDPA polymersomes at BECs. Hence, our work offers a new insight into the mechanism of transcytosis that could be explored when engineering nanoparticles for drug delivery to the delivery.

References

[1] Xiaohe Tian, Sophie Nyberg, Paul S. Sharp, Jeppe Madsen, Nooshin Daneshpour, Steven P. Armes, Jason Berwick, Mimoun Azzouz, Pamela Shaw, N. Joan Abbot, Giuseppe Battaglia, *Scientific Reports*, **5** (2015), 11990.