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A pristine nanoparticle (NP) in a biological fluid is 

covered spontaneously by absorbed biomolecules 

forming a corona. Proteins, in particular, are one of 

the main components of it and can be part of the 

'hard' or the 'soft corona', remaining for a relevant 

time on the NP or dynamically exchanging with 

those in solution, respectively [1]. Experiments 

debate if the irreversible protein adsorption can 

cause loss of specificity in targeting of pre-

functionalized NPs [2] or not [3]. Other data show 

that a minority of the protein’s epitopes are 

appropriately arranged for receptor binding, 

consistent with a stochastic and irreversible 

adsorption process in which proteins are, at least 

partially folded in their native state even when 

adsorbed in the hard corona [4]. Therefore, the 

details of the protein-NP assembly are essential to 

understand the possible nanoMedical applications 

[5]. Here we perform in silico studies to understand 

how the presence of interfaces or crowding affect 

the stability of the native state of a protein and its 

aggregation rate.   

We consider several cases of proteins, from those 

with a unique native state to those intrinsically 

disordered, by means of a coarse-grain protein 

model in explicit solvent [6-9]. By Monte Carlo 

calculations, we show how relevant is the water 

contribution to protein denaturation and folding [10, 

11] and to protein design [12]. We reveal that the 

hydropathy profile of proteins is a consequence of 

evolutionary pressure exerted by water in simplified 

geometries [12] and in bulk [13]. We find that a 

hydrophobic interface destabilizes the protein native 

state but can allow it to fold even if adsorbed onto a 

surface [14]. 

Furthermore, we study the proteins in a crowded 

environment, where the aggregation is tuned in a 

way that enable them to be functional at the 

concentrations required for optimally efficient 

performance [15]. We show how the increase of the 

concentration of individual protein species can 

induce a partial unfolding of the native conformation 

without the occurrence of aggregates. A further 

increment of the protein concentration results in the 

complete loss of the folded structures and induces 

the formation of protein aggregates (Fig. 1). We 

discuss the effect of the protein interface on the 

water fluctuations in the protein hydration shell and 

their relevance in the protein-protein interaction [16]. 

These results can lead the way for engineering 

proteins and drugs that would be functional at 

extreme conditions and it is potentially relevant in 

protein-NP assembly for nano-Medicine applications 

[17, 18]. 
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Figures 

  
Figure 1. Protein unfolding vs aggregation. Color map of the 

free energy profile of a selected protein, as function of the 

native contacts and inter-protein contacts, for different protein 

concentration c. Native contacts and inter-protein contacts 

have been normalized to 1. Adapted from [16].  

 

 

 
 


