
Tkwant: a software package for time-dependent quantum transport

Thomas Kloss¹

Joseph Weston^{1,2}, Benoit Gaury¹, Benoit Rossignol¹, Christoph Groth¹, and Xavier Waintal¹

¹Université Grenoble Alpes, CEA, Grenoble INP, IRIG, PHELIQS, 38000 Grenoble, France ²QuTech and Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands

thomas.kloss@cea.fr

Tkwant^{1,2} is a Python package for simulating the dynamics of nanoelectronic devices which are driven out-of-equilibrium by external perturbations.

It is an extension of the Kwant³ package and focusses on similar problems, involving semiconductors, graphene, topological materials, superconductors, metals and magnets, that can be described by tight-binding Hamiltonians. The simulated device typically consists of a scattering region of arbitrary dimension and shape, which is coupled to a number of semi-infinite electrodes in thermal equilibrium (Fig. 1).The problem is genuinely many-body even in the absence of interactions and is treated within the non-equilibrium Keldysh formalism. The code has been designed to be modular and easy to use (Fig. 2). Tkwant is free software distributed under a BSD license.

References

- T. Kloss, J. Weston, B. Gaury, B. Rossignol, C. Groth and X. Waintal, <u>Tkwant: a software package for timedependent quantum transport</u>, New J. Phys. 23 023025 (2021).
- [2] <u>https://tkwant.kwant-project.org/</u>
- [3] https://kwant-project.org/

Figure 1: The system typically consists of a central scattering region which is connected to several leads.

impo	ort tkwant
impo	ort kwant
syst	: = make_system()
curi	<pre>rent_operator = kwant.operator.Current(syst)</pre>
stat	te = tkwant.manybody.State(syst, tmax=1000)
for	time in range(1000): state.evolve(time)
	<pre>current = state.evaluate(current_operator)</pre>

Figure 2: Using Tkwant is simple and consists in writing a small Python script that comes close to physical intuition.