2D Layered MPX₃ Performance for Water Splitting Reactions

Rui Gusmão

Filipa M. Oliveira, Jan Paštika, Zdeněk Sofer

Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Czech Republic

rui.gusmao@vscht.cz

Two-dimensional (2D) layered materials are currently one of the most explored materials developing efficient and for stable electrocatalysts for energy conversion applications. Some of the 2D metal phosphorous trichalcogenides, $M_2P_2X_6$ or simply MPX₃, have been reported to be catalysts water useful for splitting,[1] been less although the results have promising for the sluggish oxygen evolution reaction (OER) due to insufficient activity or compromised stability.

We report on the water splitting performance of a series of MPX₃ ($M^{2+} = Mn$, Fe, Co, Zn, Cd; X = S, Se). For the series of MPX₃, CoPS₃ yields the best results with an overpotential within the range of values usually obtained for IrO_2 or RuO_2 catalysts. liquid-phase exfoliation of CoPS₃ The improves the OER activity due to the abundant active edges of the downsized sheets, accompanied by the presence of surface oxides. The influence of the OER medium and the underlying substrate electrode is studied, with the exfoliated CoPS₃ reaching the lowest overpotential also able to sustain high current densities, with excellent stability after multiple cycles or long-term operation.

The photoelectrochemical (PEC) responsivity of MPX₃ was also tested in the OER region, with excitation wavelengths from 385 to 700 nm, is reported. [3] The experimentally determined optical bandgaps of the MPX₃ materials range from 1.5 eV for FePSe₃ to 3.7 eV for ZnPS₃. At +1.23 V vs. RHE, the PEC activity in the OER region of MnPSe₃ exhibits superior performance,

while the exfoliation of CoPS₃ improves its PEC activity up to double in contrast with its bulk counterpart. The influence of the substrate and applied potential is also optimized.

References

- R. Gusmão et al., Angew. Chemie Int. Ed. 58 (2019) 9326–9337.
- [2] F.M. Oliveira et al. ACS Appl. Mater. Interfaces. 13 (2021) 23638–23646.
- [3] F.M. Oliveira et al., Adv. Mater. Interfaces. (2021) 2100294.

Figures

Figure 1: (A) Periodic table in which the filled blocks represent the elements selected for the synthesis of MPX3 materials. Top (c-axis) view of the crystal structures of (B) MnPS3 and (C) MPSe3. Color scheme: Mn – orange, P – pink, S – yellow, Se – green. D) Scheme of the photoelectrochemical response of MPX3 for OER.