Microscopic Origin of the Valley Hall Effect in Transition Metal Dichalcogenides

Nicolas Ubrig Université de Genève – Department of Quantum Matter Physics

ImagineNano, 3PM 2018

UNIVERSITÉ DE GENÈVE

FACULTÉ DES SCIENCES Section de physique

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Bilbao, March 13th, 2018

Results

The Valley Hall Effect

D.Xiao et al., PRL **99**, 236809 (2007) W.Yao et al., PRB **77**, 235406 (2008) D.Xiao et al., PRL **108**, 196802 (2012) Microscopic Origin of the VHE

- o Hall conductivity can be ≠ 0 in absence of magnetic field
- Condition: System with broken inversion symmetry and time reversal symmetric
- Valley degree of freedom is of fundamental importance

The effect relies on optically generated quasi-particle, i.e. *excitons* and *charged excitons*

Microscopic Origin of the Valley Hall Effect in Transition Metal Dichalcogenides

UNIVERSITÉ DE GENÈVE March 13th, 2018 2 / 14

0.6

13 14

Group VI TMD

Microscopic Origin of the VHE

- WS₂, MoS₂, WSe₂, MoSe₂, MoTe₂
 - Direct band gap at K and K' points
 - Broken inversion symmetry
 - Circular polarization dependent optical selection rules

March 13th, 2018

3/14

Microscopic Origin of the VHE

Berry curvature and Hall effect

Hall conductivity

$$\sigma_{\mathrm{Hall}} = rac{e^2}{\hbar} \int rac{\mathrm{d}\mathbf{k}}{(2\pi^2)} f(\mathbf{k}) \Omega(\mathbf{k})$$

 $\Omega(\mathbf{k})$ Berry curvature $f(\mathbf{k})$ Fermi-Dirac

Xiao *et al.*, PRL **99**, 236809 (2007)

- Berry curvature has opposite sign in K and -K valleys
- In equilibrium Hall conductivities of each single valley cancel out each over

 $\sigma_{\rm Hall}^{K} = -\sigma_{\rm Hall}^{-K}$

Results

Microscopic Origin of the VHE

Berry curvature and Hall effect

Hall conductivity

$$\sigma_{\mathrm{Hall}} = rac{e^2}{\hbar} \int rac{\mathrm{d}\mathbf{k}}{(2\pi^2)} f(\mathbf{k}) \Omega(\mathbf{k})$$

$\Omega(\mathbf{k})$ Berry curvature $f(\mathbf{k})$ Fermi-Dirac

- Circular polarization induces a non-equilibrium distribution between both valley
- Emergence of a light induced Hall voltage without magnetic field

Results ●00 Microscopic Origin of the VHE

Experimental setup

Microscopic Origin of the Valley Hall Effect in Transition Metal Dichalcogenides

UNIVERSITÉ DE GENÈVE March 13th, 2018 5 / 14

Results

Microscopic Origin of the VHE

Valley Hall effect in WS₂

- Shining circular polarized light on a device with a simple geometry
- Signal proportional to the degree of circular polarization

March 13th, 2018

6 / 14

Results

Microscopic Origin of the VHE

Valley Hall effect in WS₂

- The key point to understand the effect is the spectral repsonse of the effect
- VHE signal peaks at the same incident energy as PL and photocurrent
- Optical response is governed by quasi-particles with hundred meV binding energy
- \circ Excitons are charge neutral \rightarrow No voltage, even if they accumulate

Experimental strategy to discriminate between both mechanisms

Microscopic Origin of the Valley Hall Effect in Transition Metal Dichalcogenides

UNIVERSITÉ DE GENÈVE March 13th, 2018 8 / 14

Results

Microscopic Origin of the VHE

Excitonic Origin of the VHE in WS₂

Microscopic Origin of the Valley Hall Effect in Transition Metal Dichalcogenides

UNIVERSITÉ DE GENÈVE March 13th, 2018 9 / 14

Results 000 Microscopic Origin of the VHE

Valley Hall Effect in bilayer 3R-MoS₂

3R type TMDs: Inversion symmetry broken

Suzuki *et al.*, Nat. Nanotech. **9**, 611-617 (2014)

Microscopic Origin of the Valley Hall Effect in Transition Metal Dichalcogenides

10 / 14

VHE from excitons (X^A₀)

Microscopic Origin of the VHE

UNIVERSITÉ DE GENÈVE

11 / 14

Microscopic Origin of the Valley Hall Effect in Transition Metal Dichalcogenides

UNIVERSITÉ DE GENÈVE March 13th, 2018 12 / 14

Conclusion

lesults

Microscopic Origin of the VHE

- $\circ~\mbox{VHE}$ is mainly mediated by excitons and trions
- Demonstration of an experimental strategy to discriminate between exciton and trion contribution to the VHE
- $\circ~$ Composite quasi-particles possess a Berry curvature

Outlook

- $\circ~$ Se based TMDs narrower linewidth
- Determination of the valley coherence length

NU et al., Nano Letters 17, 5719-5725 (2017)

Microscopic Origin of the Valley Hall Effect in Transition Metal Dichalcogenides

UNIVERSITE DE GENÈVE March 13th, 2018 13 / 14

esults

Microscopic Origin of the VHE 000000●

Aknowledgements

UniGe, Morpurgo group 🖇

- Sanghyun Jo
- Marc Philippi
- Davide Costanzo
- Alberto Morpurgo

EPFL

UNIVERSITÉ DE GENÈVE

• Helmuth Berger

UniGe, van der Marel
Alexey Kuzmenko
Dirk van der Marel

