
Safe-by-design. Risk assessment and Risk governance

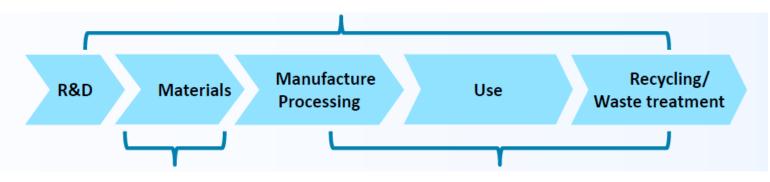
IMAGINENANO INDUSTRIAL FORUM Barakaldo, 14|03|2018

Isabel Rodríguez Llopis

© 2018 GAIKER Centro Tecnológico

Safe-by-design. Risk assessment and Risk governance

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239


Horizon 2020 Framework Programme of the European Union

2

What is Safe-by-design. NanoReg2 concept.

To integrate knowledge of nanomaterials' potential adverse effects on human health, animals and the environment into the process of designing nanomaterials and nanoproducts and/or their production processes—and to engineer these undesirable effects out.

It covers:

- All the value chain. Three pillars Safe products, safe production, safe use.
- Reduces costs

This project has received funding from the Euro

Union's Horizon 2020 research and innovation programme under grant agreement No 686239

3

Safe-by-design

- Early identification of potential risks and uncertainties. Integrated Safety assessment.
- Actions to reduce or eliminate those uncertainties and risks at the earliest stage of development.
- Comparative safety assessment.

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 68623

Integrated safety assessment: RA, LCA, SEA

Risk Assessment (RA) in SbD

- Control banding tool for preliminary RA: identification of hot spots and lack of information.
- Comparative Risk assessment: before and after SbD, improvements in safety.

Life Cycle Assessment (LCA) in SbD

- Established & standardised method. Evaluates potential impacts on ecosystems, human health and resources.
- Limitations when applied to nanomaterials.
 Development needed: evaluation methodology & data on production.
- LCA can be applied even in the design stages to manage/ control the (out-coming-future) potential impacts.
- Different scenarios can be evaluated.

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239

Socio-Economic Analysis (SEA):

- Socio-Economic Analysis is a decision support approach for evaluation of regulation, regulatory proposals, projects...
- Methodological comparison of pros and cons of alternative situations
- Take into account : environmental, health
 and economic impacts

• PRA dossier for each value chain demonstrator (Description of the case studies in terms of RA):

- Scope of the case study for the SbD implementation
- Information about the nanomaterial: Available data
- Information about the production process

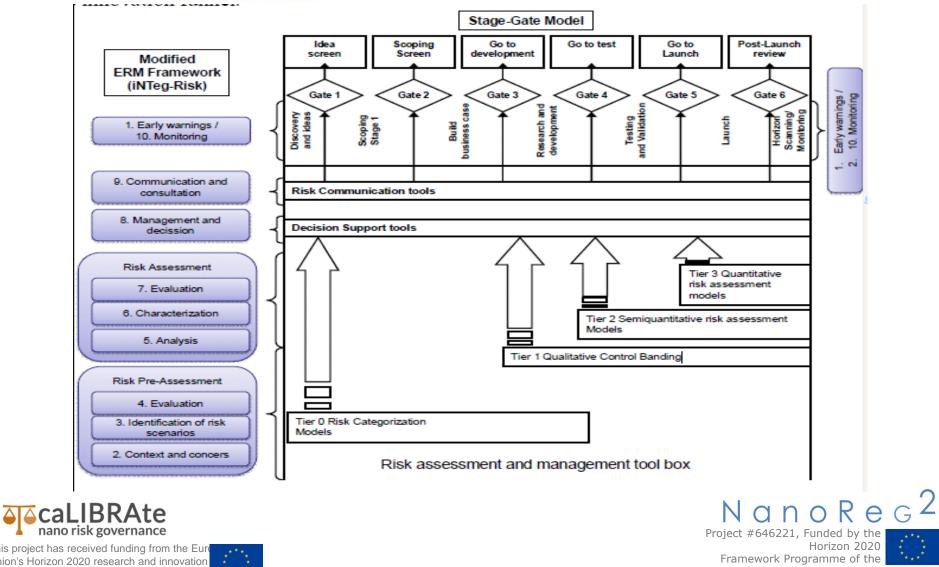
Selection of RA tools. SIA Toolbox.

 Phase/Stage of the case study
 + Expected outcome: Risk, cost, benefit, all

 Selection of
 models

The scope, input parameters and output of each model should be studied

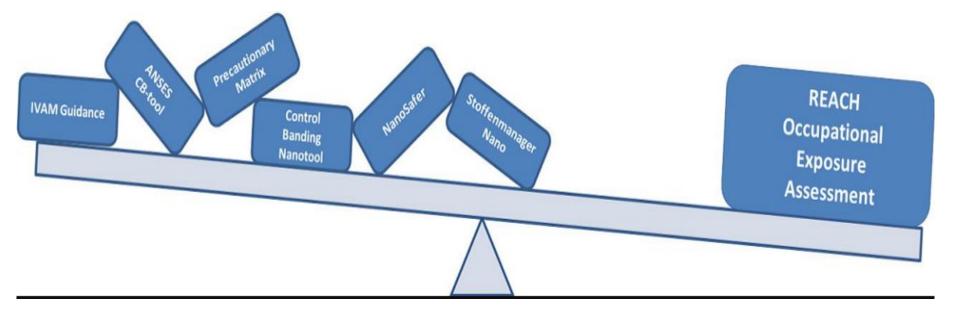
Preliminary Risk Assessment



This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239

RISK ASSESSMENT

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239


Framework Programme of the

European Union

Control banding tools

Both hazard and exposure are graded into two to five different levels, usually referred to as bands. The two sets of bands are combined, resulting into control or risk bands. Simple, qualitative, few data available

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239

Horizon 2020 Framework Programme of the European Union

Control banding RA models

Model	Scope	Target group	# parameters	Outcput		
CB Nanotool	CB Nanotool Risk ass. and man.		45	Risk Level + general recommendation		
Swiss Precautionary Matrix	Source identification and risk reduction	Workers, consumers and the environment	28	Need for action/no action		
Stoffenmanager Nano	Prioritize health risks implementation of control measures.	Workers	47	Risk priority bands. Ranking priority of needed actions		
NanoSafer	Precautionary risk assessment	Workers	29	Risk Level (RL). Recommendation and actions to be taken into consideration		
Nano Risk Cat	Risk assesment	ent Professional end users, 16 consumers, environment		Exposure and hazard potential		
ISO/TS 12901-2:2014	Prioritize health risks and implementation of control measures.	Workers		Risk Level (RL). Recommendation and actions to be taken into consideration		

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239

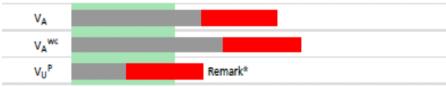
Project #646221, Funded by the Horizon 2020 Framework Programme of the European Union

One Example: Swiss Precautionary Matrix

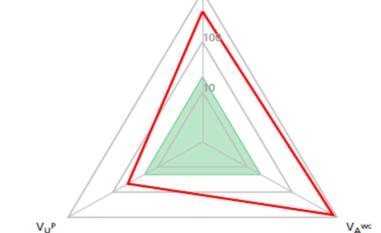
Potential offect	W
	vv
Redox activity, catalytic activity, oxygen radical formation potential or induction potential for inflammatory reactions of the nanomaterial	W1
Stability (half-life) of the nanomaterial in physiological conditions	W2A,V
Stability (half-life) of the nanomaterial under environmental conditions	W2 _U
Carrier material	E1
Potential for release related to human exposure	E1AV
Potential for release related to the environment	E1 _U
Potential for release related to human exposure Potential for release related to the environment Maximum possible human exposure Amount of nanomaterials handled by an employee per day	
Amount of nanomaterials handled by an employee per day	E2.1
Amount of nanomaterials with which an employee could come into contact in the worst case	E2.2
Frequency with which an employee handles nanomaterials	E2.3
Amount of nanomaterials handled by a consumer per day via the utility product	E2.4
Frequency with which a consumer uses the utility product	
Maximum possible input into the environment	E3
Amount of nanomaterials reaching the environment from wastewater, exhaust gases, solid waste per ye	
Annual amount of nanomaterials in utility products	E3.2
Amount of disposed nanomaterials per year	E3.3
LIBRAte Nano	Re
	led by the izon 2020
	Stability (half-life) of the nanomaterial in physiological conditions Stability (half-life) of the nanomaterial under environmental conditions Carrier material Potential for release related to human exposure Potential for release related to the environment Maximum possible human exposure Amount of nanomaterials handled by an employee per day Amount of nanomaterials with which an employee could come into contact in the worst case Frequency with which an employee handles nanomaterials Amount of nanomaterials handled by a consumer per day via the utility product Frequency with which a consumer uses the utility product Maximum possible input into the environment Amount of nanomaterials reaching the environment Amount of nanomaterials in utility products Amount of nanomaterials in utility products Amount of disposed nanomaterials per year

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239

Horizon 2020 Framework Programme of the European Union



One Example: Swiss Precautionary Matrix


Popup		
/ees	VA	408
/ees	w we	
	VA	813
Precautionary need environment production		48
VA		
.1000		
	vees ent production V _A	vees V _A vees V _A ^{wc} ent production V _U ^P V _A

"Unknown" fraction

This diagram shows the unknown part of the result (red bar). If the unknown part is consequential, a few clarifications can lead to a significantly more favourable result.

* Further clarification can possibly allow these values to fall into the green zone.

Calibrate

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239

European Union

|11|

Another example: Nanosafer

Material information	Safety data	Description of the work process and contextural information			
Is the material labeled with a nano-specific word or term?	OEL for the comparable coventional material	Emission rate if constant source			
Is the material coated or surface modified	Risk sentences: General toxicity; Carcinogenic effect Reprotoxicity Allergy and sensitization; Neurotoxicity	Activity handling energy factor			
Dimensions of the primary particles		Total mass of material handled in each work cycle			
Specific density		Duration of the work cycle			
Solubility		Pause between work cycles			
specific surface area		Number of work cycles per day			
Powder dustiness		Amount of nanomaterial handled in each transfer			
		Time required to add each transfer (spoon, bag, big-bag etc)			
		Volume of the work room (width, length, height)			
		General Far-field air exchange rate			

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239

NanoReg2 Project #646221, Funded by the

Horizon 2020 Framework Programme of the European Union

|12|

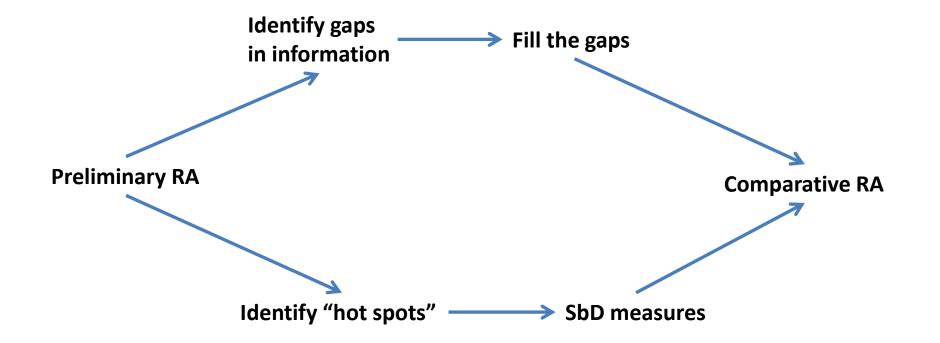
Another example: Nanosafer

Result of assessment

Estimated hazard level The hazard level is esti Potentially hazardous h nanomaterial No A high volume specific sum m2/cm3 OEL of analogue bulk m Solubility: Insoluble (< 1 Presence of surface coa Known hazards of analo R22 Harmful if swallowed R36 Irritating to eyes R37 Irritating to respirato R38 Irritating to skin R43 May cause sensitizati	mated based on high aspect ratio face area of 400.00 material: 2 mg/m3 L g/L) ating: No ogue bulk material ry system	Estimated time-resolve	ed exposure potential
Near-field Acute	Near-field Daily	Far-field Acute	Far-field Daily
32.30	20.44	9.507	18.76
EB5: Very high exposure	EB5: Very high exposure	EB5: Very high exposure	EB5: Very high exposure
RL5: Very high toxicity suspected	RL5: Very high toxicity suspected	RL5: Very high toxicity suspected	RL5: Very high toxicity suspected
and/or moderate to very high	and/or moderate to very high	and/or moderate to very high	and/or moderate to very high
exposure. The work should be	exposure. The work should be	exposure. The work should be	exposure. The work should be
conducted under strict dust release	conducted under strict dust release	conducted under strict dust release	conducted under strict dust release
control, such as in a fume-hood,	control, such as in a fume-hood,	control, such as in a fume-hood,	control, such as in a fume-hood,
separate enclosure etc. Air-supplied	separate enclosure etc. Air-supplied	separate enclosure etc. Air-supplied	separate enclosure etc. Air-supplied
respirators or highly efficient filter	respirators or highly efficient filter	respirators or highly efficient filter	respirators or highly efficient filter
masks (PP3 or higher quality) may	masks (PP3 or higher quality) may	masks (PP3 or higher quality) may	masks (PP3 or higher quality) may
be used as a supplement and must	be used as a supplement and must	be used as a supplement and must	be used as a supplement and must
be readily available in case of	be readily available in case of	be readily available in case of	be readily available in case of
accidents. Expert advice is	accidents. Expert advice is	accidents. Expert advice is	accidents. Expert advice is
recommended.	recommended.	recommended.	recommended.

Based on the estimated hazard and exposure potential it is recommended to apply engineered protection equipment with a protection factor of 322.99

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239



NanoReg² Project #646221, Funded by the

Horizon 2020 Framework Programme of the European Union

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239

Framework Programme of the European Union

|14|

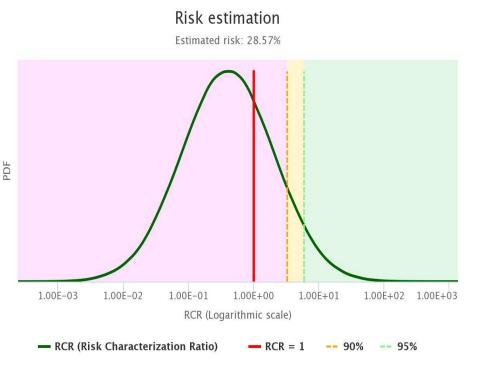
i. Use of the control banding tools. Comparison with preliminary RA

ii. Use of a semiquantitative or qualitative models: ie SUNDS, Weigh of Evidence, Guidenano, etc.

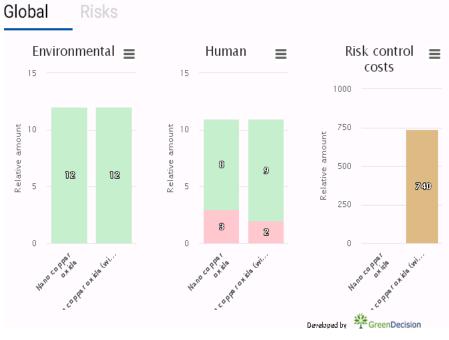
This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239

It applies a two tiers approach which, on the basis of the supplied information, is able to generate qualitative or quantitative results.

- Risk for Health
- Risk for environment
- LCA
- SEA



This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239



One example: SUNDS

Comparison

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239

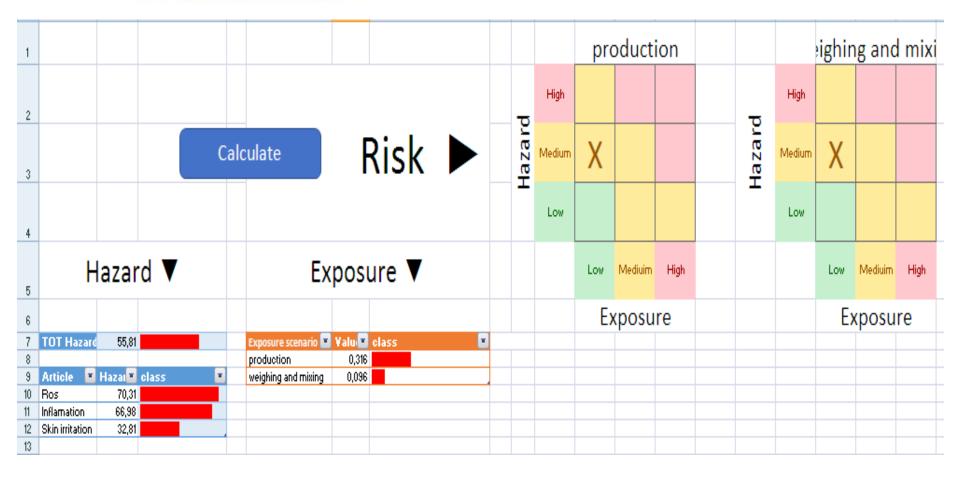
|17|

Weigh of Evidence

Combines the available data into hazard and exposure classes through a system of weights and algorithms. Relevance for the risk assessment and data quality are taken into account in the integration process.

		Ja Cylob	ovicity							
4	A	BCC) E	F G	H	J K I	M	N	0 P	Q
1	Hazard Create Articles			Exposure Create Scenarios			Risk			
2	Articles	Weigh	ts	Scenarios	Weigl	nts	Haza	rd	Ехро	sure
3	Articles	Index value		Exposure scenarios	Material characteristics		Thresholds		Thresholds	
4	Name 💽	Name 💽 wei	g 🖬 Norm Ve 🖬	Name	Name 🗖 we	ig Norm¥e	Name	🔹 Vale 🖸	Name	🔹 Vale 🖬
5	Inflamation	Toxicity	1 0,500	production	Physical environment	8 0,800	Low-Medium	33	Low-Medium	0,33
6	Ros	Physico-chemical propert	1 0,500	weighing and mixing	Weight fraction	2 0,200	Medium-High	66	Medium-High	0,66
7	Skin irritation									
8		statistical power			Operational conditions					
э		Name 💽 wei	g 💽 Norm 🖌 e 💌		Name 💽 we	ig 💽 Norm¥e 💽				
10		statistical significance	6 0,600		Duration and Frequen-	3 0,300				
11		sample size	4 0,400		Process type	1,5 0,150				
12					Amount handled (mg)	2 0,200				
13		Quality weight			Use of general ventilal	3,5 0,350				
14			g 🖬 Norm Ve 🖬							
15		toxicological significance	1 0,250		Exposure potential					
16		statistical power	1 0,250			ig 🖸 Norm Ve 💽				
17		reliability	1 0,250		Material and Process	8 0,800				
18		Adequacy	1 0,250		Operational condition	2 0,200				
19										
20		Adequacy			OWA weights					
21			g 🖬 Norm Ve 🖬			ig 💽 Norm¥e 🔜				
22		In vivo	4 1,000		w1	8 0,800				
23		In vitro	1,5 0,375		w2	2 0,200				
24		Inhalation	4 1,000							
25		Ingestion	1 0,250							
26		Dermal	4 1,000							
27		Carcinogenicity	0 0,000							
28		Inflammation	2 0,500							
29		Oxidative stress	3 0,750							
30		Genotoxicity	4 1,000					_		
31		Fibrogenecity	0 0,000							
32		Cytotoxicity	4 1,000							
33										
34								_		
35 36										

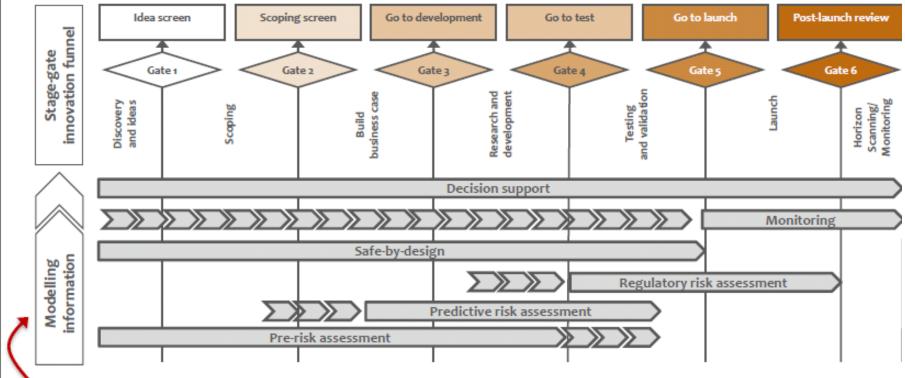
This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239



Project #646221, Funded by the Horizon 2020 Framework Programme of the European Unio<mark>1</mark>8

Weigh of Evidence. Results

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239



Horizon 2020 Framework Programme of the European Unio<mark>1</mark>9

Technical and safety information level

* ISO31000 and iNTEG Emerging Risk Management Framework

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239

Horizon 2020 Framework Programme of the European Union

caLIBRAte will provide a Risk **Governance Framework** integrating SbD and models that have been chosen for the different stages and "calibrated" through sensitivity analysis.

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239

NanoRe Project #646221, Funded by the Horizon 2020

Framework Programme of the European Union

21

What will caLIBRAte deliver?

A framework to assist industries in developing "safe" nanomaterials and nano-enabled products

EHS control banding, risk assessment and decision support tools tested and documented for nanomaterials

Ability to improved confidence and trust in risk communication between stakeholders and risk transfer

Key 4 Nano-Risk Innovation Governance!

This project has received funding from the Euro Union's Horizon 2020 research and innovation programme under grant agreement No 686239

Project #646221, Funded by the Horizon 2020 Framework Programme of the European Union

eskerrik asko

Isabel Rodríguez Llopis rodriguez@gaiker.es

Parque Tecnológico de Bizkaia, Edificio 202 48170 Zamudio | Bizkaia | Spain T. 0034 94 6002323 mark@gaiker.es | www.gaiker.es