

PILOT LINE FOR LARGE-AREA PRINTING OF ELECTRONIC AND PHOTONIC DEVICES

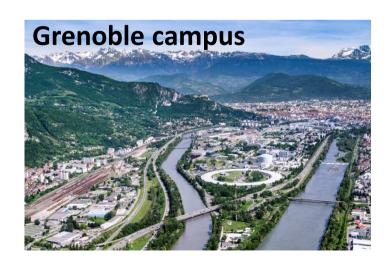
Simon Perraud, Ph.D. Vice president for European affairs

ABOUT LITEN

Liten is the research institute of CEA devoted to clean energy technologies

955 researchers

125 million euros annual budget


200+ patent applications per year

200+ publications per year

400+ research contracts with industrial partners every year

120+ ongoing European projects

HOLISTIC APPROACH FOR A LOW-CARBON AND CIRCULAR ECONOMY

INNOVATION ALONG THE FULL VALUE CHAIN

COMPONENTS

SYSTEM INTEGRATION

PROCESSES

ENERGY MANAGEMENT SYSTEMS

MATERIALS

MODELLING AND MONITORING

RESEARCH ACTIVITIES

Renewable energy sources

- Solar photovoltaics
- Solar thermal energy
- Bioenergy and waste-to-energy

Energy storage

- Batteries
- Hydrogen and synthetic fuels
- Thermal energy storage

Energy efficiency

- Industry
- Buildings
- Electrified powertrains

Energy grids

- Power grids
- Heating and cooling networks
- Multi-carrier energy systems and sectoral integration
- Techno-economic analysis of clean energy technologies

Materials

- Sustainable material management (net-shape manufacturing, raw material recovery, eco-innovation)
- Functional materials (surface functionalization, large-area electronics and photonics, nanomaterials)
- Cross-cutting activities (material characterization, ab-initio modelling, nano-safety)

PILOT LINES AND INFRASTRUCTURES

SOLAR PHOTOVOLTAICS

15 000 m² - 200 pers. - 100 M€

THERMAL TECHNOLOGIES

1500 m² - 75 pers. - 15 M€

BIO-ENERGY AND WASTE-TO-ENERGY

800 m² - 40 pers. - 7 M€

BATTERIES

3000 m² - 100 pers. - 40 M€

HYDROGEN PRODUCTION

820 m² - 40 pers. - 6 M€

FUEL CELLS

500 m² - 40 pers. - 6 M€

SMART GRIDS

ENERGY-EFFICIENT BUILDINGS

40 pers. - 1,5 M€

ELECTROMOBILITY

1500 m² - 20 pers. - 4 M€

MATERIAL

POWDER METALLURGY

1400 m² - 50 pers. - 12 M€

LARGE-AREA ELECTRONICS **AND PHOTONICS**

600 m² - 50 pers. - 9 M€

300 m² - 100 pers. - 2 M€

3000 m² - 80 pers. - 30 M€

NANO SAFETY

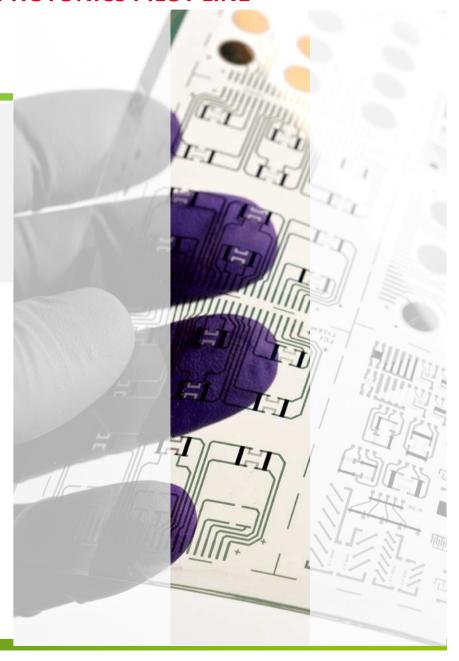
5000 m² - 150 pers. - 17 M€

OBJECTIVE: develop cost-effective printing processes to functionalize large surfaces with electronic and photonic functionalities

50 researchers

9 M€ investment

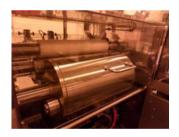
600 m² clean room


GEN1 (320 mm x 380 mm) sheet-to-sheet printing: screen printing, gravure printing, flexo printing, inkjet printing, aerosol jet printing, slot-die coating, ...

50 patents

Arkema, Merck, Incore, Isorg, Trixell, Walter Pack, Symbiose, Bosch, ArjoWiggins ...

GEN1 (320 mm x 380 mm) sheet-to-sheet printing



Screen printing
Stencil – screens

Gravure printingEngraved hard cylinder

Flexo printingCylinder with soft printing plate

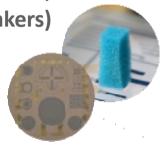
Inkjet printing 126-256 nozzles

Aerosol jet printing
Tilted head
Curved surfaces

Slot die coating Vacuum bake

Laser ablationDUV laser

Photonic curing
Xenon lamps

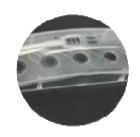

Nano-imprint PDMS stamps

2.5D printingAerosol jet printing

Piezoelectric actuators (haptic feedback, loudspeakers)

Smart paper surfaces

Organic thin film transistors and passive devices


Chemical and biochemical sensors (pH, glucose, lactate)

Resistive sensors (temperature, strain)

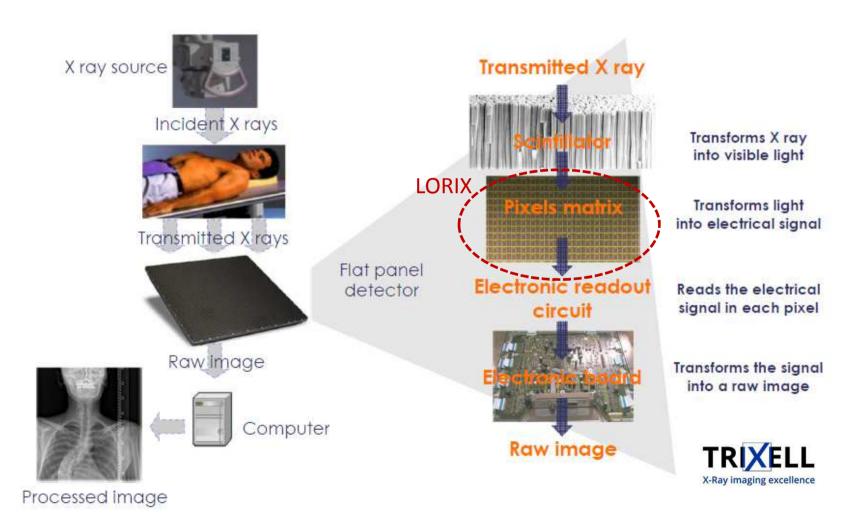
Pictic

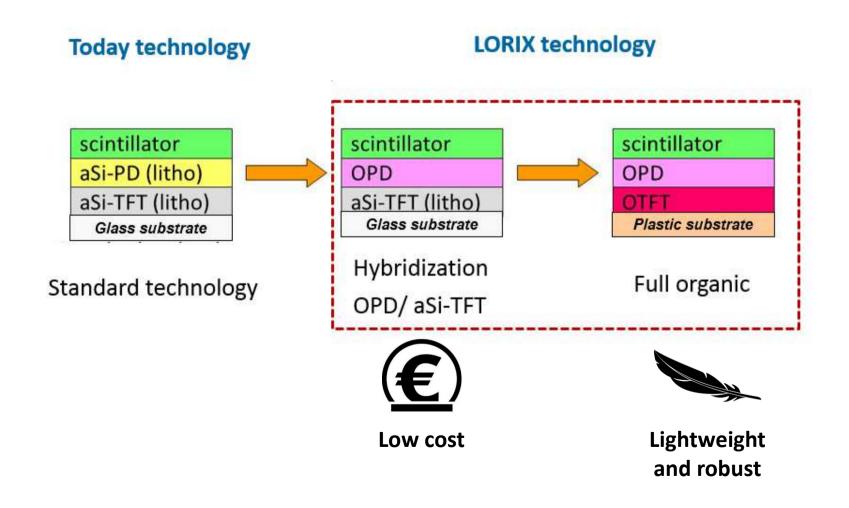
Smart plastic surfaces

Photodetectors X-ray imaging

Project ID:

- Title: Large Organic Robust Imager for X-ray sensing
- February 2015 July 2018
- 9.7 M€
- 12 partners
- Coordinator: CEA Liten




Project background: X-ray flat panel detector technology

Project concept:

printed organic photodetectors (OPD) for X-ray flat panel detectors

Project applications:

- X-ray imaging for healthcare
- Security
- Non destructive testing

Some project results:

Pilot line upgrade

- Automatic optical inspection for defect detection in OPD matrix
- Atomic layer deposition for OPD encapsulation

OPD flat panel detector prototypes

 Similar performances as standard devices

Towards industrialization:

CEA Liten pilot line

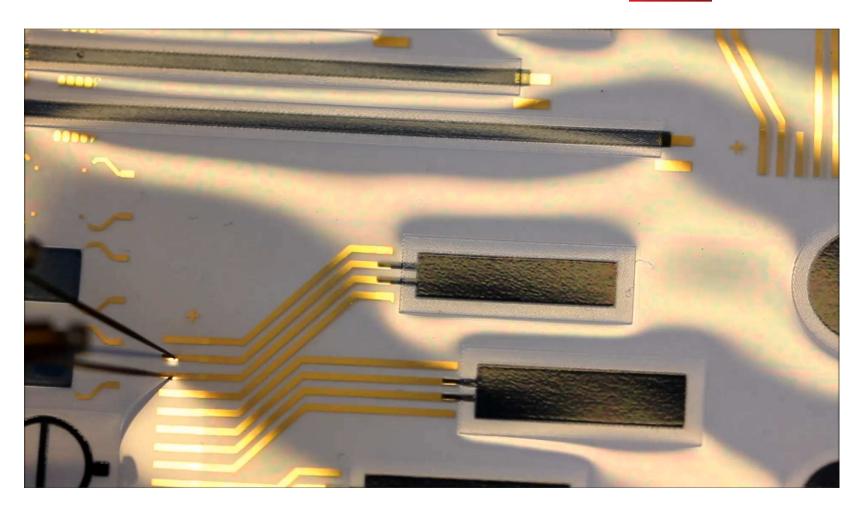
GEN1 (320 mm x 380 mm) Grenoble, France

Isorg production line

GEN4 (650 mm x 780 mm) Limoges, France

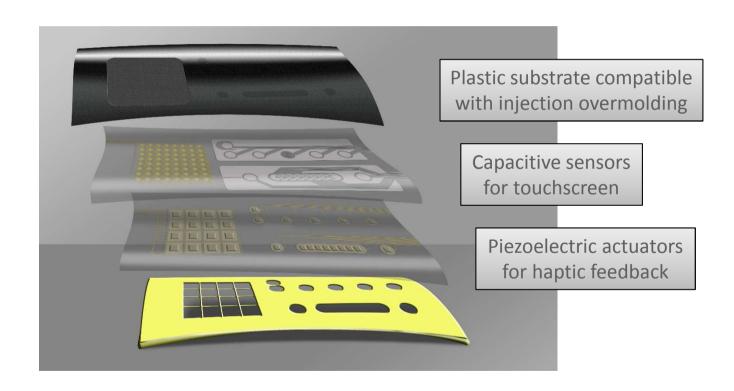
Project ID:

- Title: Haptic Printed and Patterned Interfaces for Sensitive Surface
- January 2015 December 2017
- 3.8 M€
- 8 partners
- Coordinator: CEA Liten

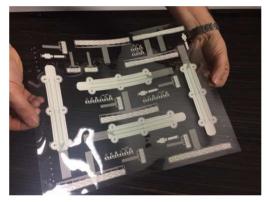


Project background: piezoelectric actuator development

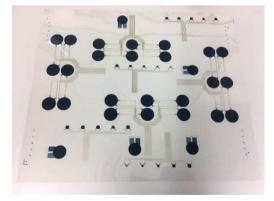
Project background: trend among automotive suppliers to design smooth and seamless dashboards integrating touchscreens


Project concept:

- Need for eyeless human machine interface on the dashboard touchscreen
- Solution: haptic feedback (=addressing the sense of touch)
 - Finger detection by the dashboard touchscreen
 - Haptic feedback by printed piezoelectric actuators



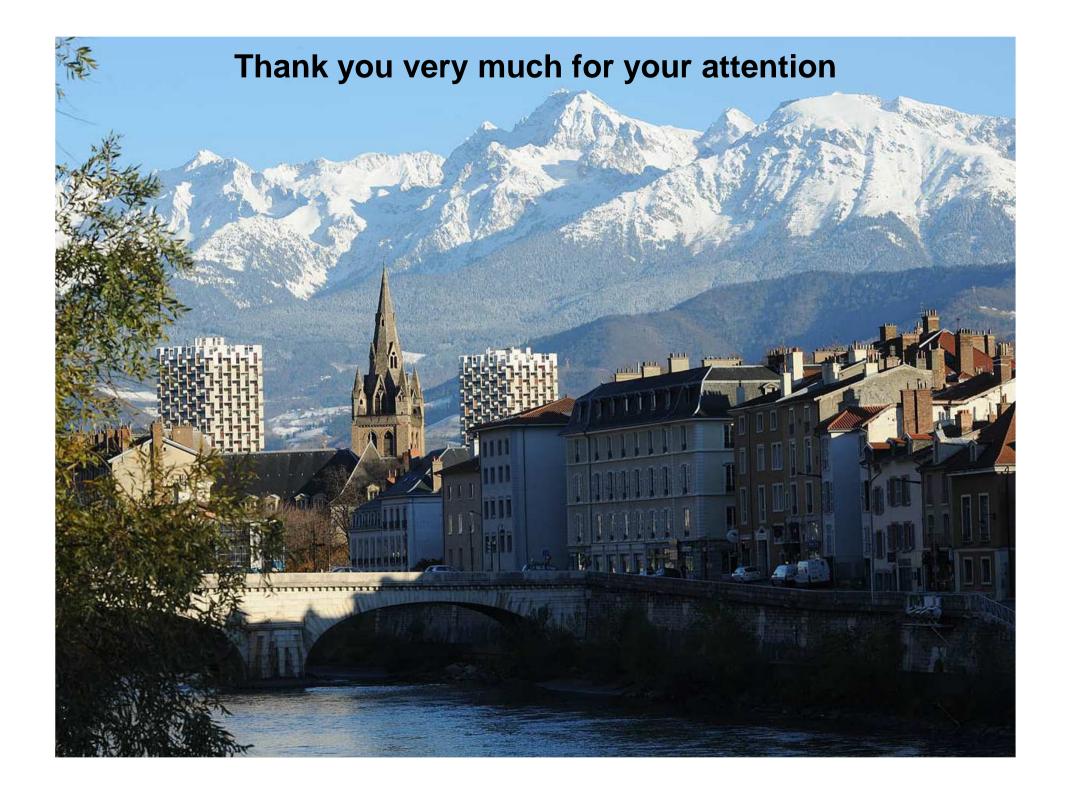
Project concept:



Some project results:

Sensor and actuator foil printing

Injection overmoulding of foils


Integration into a concept car

FOR FURTHER INFORMATION

- LORIX project: Audrey Martinent (<u>audrey.martinent@cea.fr</u>)
- HAPPINESS project: Antoine Latour (<u>antoine.latour@cea.fr</u>)

Commissariat à l'énergie atomique et aux énergies alternatives 17 rue des Martyrs | 38054 Grenoble Cedex www-liten.cea.fr