

Probing electron optics in a Dirac fermion reflector

<u>H. Graef^{1,2}, M. Rosticher¹, D. Mele¹, Q. Wilmart¹, L. Banszerus³, C. Stampfer³, T. Taniguchi⁴, K. Watanabe⁴, E. Bocquillon¹, G. Fève¹, J.M. Berroir¹, E.H.T. Teo² and B. Plaçais¹</u>

¹Laboratoire Pierre Aigrain – ENS, Paris, France; ²CINTRA – Nanyang Technological University, Singapore; ³2nd Institute of Physics A – RWTH Aachen, Germany; ⁴National Institute for Materials Science, Tsukuba, Japan

Laboratoire pierre aigrain électronique et photonique quantiques

Outline

Dirac Fermion Optics (DFO)

Dirac Fermion Optics (DFO)

	Photon optics (3D)	Dirac fermion optics (2D)
Medium	transparent	ballistic
Phase velocity	$3 \cdot 10^8 ms^{-1}$	$10^{6} m s^{-1}$
Snell-Descartes	$n_1 sin \theta_1 = n_2 sin \theta_2$	$E_{F1}sin\theta_1 = E_{F2}sin\theta_2$
Critical angle	$ \theta_c = \arcsin\left(\frac{n_2}{n_1}\right) $	$\theta_c = \arcsin\left(\frac{E_{F2}}{E_{F1}}\right)$
Fresnel relation	$R_{s} = \left \frac{n_{1} cos\theta_{i} - n_{2} cos\theta_{t}}{n_{1} cos\theta_{i} + n_{2} cos\theta_{t}} \right ^{2}$	$T(\theta) = e^{-\pi \frac{2d}{ k_1 - k_2 } k_2^2 \sin^2 \theta}$

Cheianov et al., PRB 74 (2006) 041403(R) J. Cayssol et al.,

Dirac Fermion Reflector (DFR)

Q. Wilmart et al., 2D Mat. 1 (2014) 11006

Bicycle photon reflector

Sample fabrication

nano-patterned bottom gates

- gold or tungsten

- made using EBL+RIE
- independent control

of E_{F1} and E_{F2}

- sharp junction $k_F d \leq 1$
- small device $L < l_{mfp}$

Morikawa et al., Semicond. Sci. Technol. **32** (2017) 045010 20° opening angle, top-bottom gate approach:

monocrystalline CVD graphene encapsulated in exfoliated hBN

10 µm

L. Banszerus et al., Nano Lett. **16** (2016) 1387

etching + 1D edge contact

Wang et al., Science 342 (2013) 614

final sample

- > nano-patterned bottom gates ensure precise control of the refractive index
- high-quality encapsulated graphene ensures long mean free path

"Fabry-Pérot" oscillations (coherent DFO) at 6 Kelvin

Calibrate gate coupling, so that:

$$L = \frac{2\pi}{\Delta k_{F1}} = 600 \ nm$$

Oscillations disappear around:

$$T_{smear} = \frac{hv_F}{2k_B \cdot 600nm} = 40 \, K$$

> Calibration of the DFR dwell length at 600 nm

Dirac fermion reflector (geometric DFO) at 60 Kelvin

DC experiment at 60K

Scattering simulation

in situ tuning of the DFO refractive index

• up to
$$E_{F1}/E_{F2}$$
=-4.8
($\theta_c = 12^{\circ}$)

• c.f. diamond/air: 2.4

- > DFR = resistance plateau in the n-p+ regime
- > also works at 10 GHz

Effect of acoustic phonon scattering

Acoustic phonon model explains T-dependence quantitatively

Effect of acoustic phonon scattering

Acoustic phonon model explains T-dependence quantitatively

Conclusions

- ✓ nano-patterned gates enable local control of DFO refractive index
- ✓ coherent DFO calibrates length of the reflector
- ✓ geometric DFO effect confirmed (DC and 10 GHz) and in quantitative agreement with scattering simulation
- ✓ temperature dependence in quantitative agreement with acoustic phonon scattering model
- $\checkmark\,$ viscous Dirac liquid above 100 K ?

> Thank you for your attention!