

Nanoparticles from biological source and polymer nanocomposites

Alain Dufresne

UMR 5518 CNRS / Grenoble Institute of Technology (Grenoble INP), France

Biobased (Green) Materials

Increasing demand for products made from renewable and sustainable non-petroleum based resources (green materials)

Limitation: economically viable materials \rightarrow **Polysaccharides?**

Cellulose

Structural material in plants, animals, bacteria

Natural (Lignocellulosic) Fibers

Reinforcing element in composites

Low density, low cost, high specific strength and modulus, renewability, biodegradability, availability in a variety of forms throughout the World, flexibility, non abrasive nature to processing equipment, non-toxicity, easiness to handle, high ability for surface modification, possibility to generate energy, without residue after burning at the end of their life-cycle, economic development opportunity for non-food farm products in rural areas

Hydrophilic character: poor adhesion and dispersion in non-polar matrix, high moisture absorption, **limited thermal stability**: low permissible temperatures of processing and use

Natural (Lignocellulosic) Fibers

Natural (Lignocellulosic) Fibers

Big variation of properties inherent to the natural products (climatic conditions, maturity, type of soil,...)

 \rightarrow enormous scatter of mechanical plant fiber properties

Basic idea to achieve further improved fiber and composite is to eliminate the macroscopic flaws by disintegrating the natural grown fibers, and separating the almost defect free highly crystalline fibrils

Top-Down Deconstructing Strategy

Mechanically-induced Deconstructing Strategy

Scheme of the homogenizer

Pretreatments

High energy demand

30,000 kWh/ton (Nakagaito and Yano, 2004) 70,000 kWh/ton (Eriksen et al, 2008)

\rightarrow necessity of a pretreatment

Enzymatic hydrolysis

Carboxymethylation

TEMPO-catalyzed oxidation pretreatment

Cryocrushing

Mechanically-induced Deconstructing Strategy

Malainine et al., Compos. Sci. Technol. 2005, 65, 1520-1526

Length > 1 μ m ?

Mechanically-induced Deconstructing Strategy

TEMs showing cellulose fibers after high-pressure mechanical treatment

- (a) bacterial cellulose (Saito et al., 2006)
- (b) banana peel (Pelissari et al., 2014)
- (c) banana rachis (Zuluaga et al., 2009)
- (d) beavertail cactus (Opuntia basilaris) (Kakroodi et al., 2015)
- (e) bleached eucalyptus kraft pulp (Qing et al., 2013)
- (f) bleached sulfite softwood cellulose pulp (Pääkkö et al., 2007)
- (g) bleached sulfite wood pulp (Saito et al., 2006)
- (h) cotton (Saito et al., 2006)
- (i) garlic skin (Zhao et al., 2014)
- (j) Opuntia ficus-indica (Malainine et al., 2003)
- (k) Posidonia oceanica balls (Bettaieb et al., 2015)
- (I) Posidonia oceanica leaves (Bettaieb et al., 2015)
- (m) potato pulp (Dufresne et al., 2000)
- (n) prickly pear skin (Habibi et al., 2009)
- (o) spinifex grass (Triodia pungens) (Amiralian et al., 2015)
- (p) sugar beet pulp (Dufresne et al., 1997)
- (q) tunicin (Saito et al., 2006)

Dufresne, Nanocellulose: From Nature to High-Performance Tailored Materials, 2nd Ed., de Gruyter, 2017

The Need for International Standards -Terminology

	Acronym	Terminology	Reference
	MFC	Microfibrillated Cellulose	(Herrick et al., 1983; Turbak et al., 1983)
	-	Cellulose Microfibrils	(Dufresne et al., 1997; Dinand et al., 1999)
	-	Fibrillated Cellulose	(Azizi Samir et al., 2004)
	-	Nanofibrillar Cellulose	(Jin et al., 2004)
	-	Fibril Aggregates	(Cheng et al., 2007)
	-	Nanoscale Cellulose Fibrils	(Pääkkö et al., 2007)
	- <u></u>	Microfibrillated Cellulose Nanofibers	(Henriksson et al., 2007)
	- all >	Cellulose Fibril Aggregates	(Cheng et al., 2007)
C		Cellulose Nanofibers	(Abe et al., 2007; Alemdar and Sain, 2008)
A.	~0 ⁰	Cellulose Nanofibrils	(Henriksson et al., 2008; Ahola et al., 2008a; 2008b)
A'A	~	Cellulose Microfibers	(Bhattacharya et al., 2008)
``C`)`	-	Microfibril Aggregates	(Abe et al., 2009)
•	-	Cellulose Microfibril Aggregates	(Abe and Yano, 2009)
	-	Cellulose Fibrils	(Cheng et al., 2009a; 2009b))
	NFC	Nanofibrillated Cellulose	(Mörseburg and Chinga-Carrasco, 2009; Chinga-Carrasco and Syverud, 2010)
	-	Microfibrillar Cellulose	(Spence et al., 2010)

Table 2.1: Different terminologies used in the literature to describe the material resulting from the cellulose fiber fibrillation process.

Dufresne, Nanocellulose: From Nature to High-Performance Tailored Materials, 2nd Ed., de Gruyter, 2017

Chemically-induced Deconstructing Strategy

LGP2

Chemically-induced Deconstructing Strategy

Siqueira et al., *Cellulose* **2010**, *17*, 289-298

Chemically-induced Deconstructing Strategy

TEMs from a dilute suspension of CNC from:

- (a) acacia pulp (Pu et al., 2007)
- (b) alfa (Ben Elmabrouk et al., 2009)
- (c) bacterial cellulose (Grunert and Winter, 2002)
- (d) balsa wood (Morelli et al., 2012)
- (e) banana rachis (Zuluaga et al., 2007)
- (f) bleached softwood kraft pulp (Araki et al., 1998)

(g) brewer's spent grains (Martínez-Sanz et al., 2015)

- (h) Capim dourado (Siqueira et al., 2010)
- (i) cotton (Fleming et al., 2000)
- (j) curaúa (Corrêa et al., 2010)
- (k) eucalyptus wood pulp (de Mesquita et al.,
- 2010)

(I) garlic straw (Kallel et al., 2016)

(m) giant cane (*Arundo donax*) (Barana et al., 2016)

(n) grass of Korea (Pandey et al., 2008)

(o) kelp residue (Feng et al., 2015) (inset: particle size distribution)

Dufresne, Nanocellulose: From Nature to High-Performance Tailored Materials, 2nd Ed., de Gruyter, 2017 15

Chemically-induced Deconstructing Strategy

TEMs from a dilute suspension of CNC from:

- (p) kenaf (Kargarzadeh et al., 2012)
- (q) Luffa cylindrica (Siqueira et al., 2010)
- (r) maize straw (Rehman et al., 2014)
- (s) mango seed (Henrique et al., 2013)
- (t) MCC (Bondeson et al., 2006)
- (u) mengkuang Leaves (Sheltami et al., 2012)
- (v) oil palm trunk (Lamaming et al., 2015)
- (w) olive pomace (Martínez-Sanz et al., 2015)
- (x) olive stone (Abou-Zeid et al., 2015)
- (y) onion skin (Rhim et al., 2015)
- (z) Pennisetum sinese (Lu et al., 2014)
- (aa) *Posidonia oceanica* balls (Bettaieb et al., 2015)

(ab) *Posidonia oceanica* leaves (Bettaieb et al., 2015)

(ac) ramie (Habibi et al., 2008)

(ad) red algae *Gelidium elegans* (Chen et al., 2016)

-2

Dufresne, Nanocellulose: From Nature to High-Performance Tailored Materials, 2nd Ed., de Gruyter, 2017 16

Chemically-induced Deconstructing Strategy

TEMs from a dilute suspension of CNC from:

(ae) rice straw (Lu and Hsieh, 2012)
(af) sisal (Siqueira et al., 2009)
(ag) sugar beet pulp (Azizi Samir et al., 2004)
(ah) soy hulls (Flauzino Neto et al., 2016)
(ai) tomato peel (Jiang and Hsieh, 2015)
(aj) tunicin (Anglès and Dufresne, 2000)
(ak) waste newspaper (Danial et al., 2015)
(al) waste sackcloth (Cao et al., 2015)
(am) wheat straw (Helbert et al., 1996)
(an) wood fiberboard waste (Couret et al., 2017)

The Need for International Standards -Terminology

Acronym	Terminology	Reference
_	Cellulose Micelles	(Rånby, 1949)
-	Level-off D.P. Cellulose Product	(Battista and Smith, 1961)
Wh	Whiskers	(Helbert et al., 1996; Dufresne, 2008)
-	Cellulose Crystallites	(Dong et al., 1996)
- ₀ 0,	Cellulose Microcrystals	(Araki et al., 2001)
CNG, CNG	Cellulose Nanocrystals	(Grunert and Winter, 2002; Paralikar et al., 2008;
APY ar		Mangalam et al., 2009)
CHA	Cellulose Nanowhiskers	(Oksman et al., 2006; Petersson et al., 2007; Habibi
-		et al., 2008; Braun et al., 2008; Rojas et al., 2009)
-	Nanocellulose	(Morán et al., 2008)
NCC	Nanocrystalline Cellulose	(Bai et al., 2009)

Table 3.1: Different terminologies used in the literature to describe the material resulting from thecellulose fiber fibrillation process.

Dufresne, Nanocellulose: From Nature to High-Performance Tailored Materials, 2nd Ed., de Gruyter, 2017

Starch

Starch = storage polymer \rightarrow native starch = discrete and partially crystalline microscopic granules

corn, wheat, rice, potato, tapioca, peas

Starch

- (a) starch granules
- (b) amorphous and semi-crystalline growth rings
- (c) amorphous and crystalline lamellae
- (d) blocklets, (f) nanocrystals
- (g) amylopectin, (h) amylose

Le Corre et al., *Biomacromolecules* **2010**, 11, 1139-1153 20

Starch Nanocrystals

TEM of negatively stained SNC obtained after 3.16 M H_2SO_4 hydrolysis of waxy maize starch granules during 5 days, at 40 °C, 100 rpm and with a starch concentration of 14.69 wt %

(a) Aggregates of nanocrystals

(b-d) organizations of nanoplatelets

Scale bar: 50 nm.

Angellier et al., *Biomacromolecules* **2004**, 5, 1545-1551 21

Starch Nanocrystals

2 weeks hydrolysis (2.2 N HCl at 36°C) 6 weeks hydrolysis (2.2 N HCl at 36°C) 5-7 nm ^Ţ9-10 nm Longitudinal view **Planar view** ___ crystalline - amorphous https://www.youtube.com/watch? Putaux et al., Biomacromolecules v=hdx2A5gq9js 2003, 4, 1198-1202 22

Chitin

Main component of the cell walls of fungi, the exoskeletons of arthropods (crabs, lobsters, shrimps) and insects, the radulas of mollusks, and the beaks of cephalopods (squid, octopuses)

Chitin

Exoskeleton of lobster (Homarus americanus) **↑** mm ~10 µm ~20 nm (f) (g) (h) (e) (i) 1 µm -20 nm (C) ~3 nm (d) (a) (b)

Nikolov et al., J. Mech. Behav. Biomed. 2011, 4, 129-145

Chitin Nanocrystals

Squid pen

Paillet and Dufresne, *Macromolecules* **2001**, 34, 6527-6530

Crab shell

Gopalan Nair and Dufresne, *Biomacromolecules* **2003**, 4, 657-665

Riftia tubes

Morin and Dufresne, Macromolecules 2001, 35, 2190-2199 Shrimp shell

> Sriupayo et al., *Polymer* **2005**, 46, 5637-5644

> > 25

Applications of Cellulose Nanomaterials

• Increase of the specific area (~ 100 m².g⁻¹ vs. ~ 1 m².g⁻¹)

High Specific Surface Area

Lavoine et al., *Carbohydr. Polym.* **2012**, *90*, 735-764

Applications

Food, cosmetic, pharmaceutical industries

Pääkkö et al., *Biomacromolecules* **2007**, 8, 1934-1941

High Specific Surface Area

Production of foams and aerogels

Density (a) 7 kg.m⁻³ (b) 32 kg.m⁻³ (c) 79 kg.m⁻³

Applications Porous templates, filtration

High aspect ratio (10-100 for CNC, much higher for CNF)

Fleming et al., *J. Am. Chem.* Soc. **2010**, 122, 5224-5225 Anglès and Dufresne, Macromolecules 2000, 33, 8344-8353

Siqueira et al., *Cellulose* **2010**, 1*7*, 289-298

Flauzino Neto et al., *Carbohydr. Polym.* **2016**, 153, 143-152

- \bullet The average inter-particles distance decreases as their size decreases \rightarrow particle-particle interactions
- On Nanoparticles are weight efficient: improved properties for low filler content without detrimental effect on impact resistance and plastic deformation
- Reduction of gas diffusion (barrier effect)

• Small particles are "invisible": transparent coatings/films are attainable

Foldable transparent acrylic resin sheet with 5 wt% BC nanofibers More fragile neat acrylic resin sheet

Nogi and Yano, Adv. Mater., 2008, 20, 1849-1852

Applications

Electronics (flexible circuits) Energy (solar panels)

Flexibility and transparency of acrylic resin film with 60 wt% BC nanofibers

Yano et al., *Adv. Mater.*, **2005**, 17, 153-155

Because cellulose nanomaterials contain only a small number of defects, their axial Young's modulus is close to the one derived from theoretical chemistry

Atomistic simulations on the fracture energy of I β cellulose nanocrystals

Ideal dimensions optimizing fracture energy are:

4.8-5.6 nm in thickness (6-7 chain layers)

6.2-7.3 nm in width (6-7 chain layers)

Sinko et al., ACS Macro Lett. **2014**, 3, 64-69

O Lightweight material: Cellulose nanomaterial modulus potentially stronger than steel and similar to Kevlar

Material	Modulus (Gpa)	Density (g.cm ⁻³)	Specific Modulus (J.g ⁻¹)
Glass	70	2.6	27
Kevlar	60-125	1.45	41-86
Steel	200-220	8	25
MFC	100	1.5-1.6	65
CNC	130	1.5-1.6	85

Dufresne, *Mater. Today* **2013**, 16, 220-227

Processing of Nanocomposites

Cellulose Based Nanocomposites

Preferred processing medium = water because of high stability of aqueous cellulose nanomaterial dispersions

Matrix = water-soluble polymer or latex (poly(S-co-BuA))

water evaporation (T>Tg) \rightarrow particle coalescence \rightarrow nanocomposite film

Favier et al., *Polym. Adv. Technol.*, **1995**, 6, 351-355

 ψ = volume fraction of the percolating rigid phase

 ϕ_R = volume fraction of filler

 ϕ_{Rc} = critical volume fraction at the percolation threshold

b = critical exponent

 G_R = modulus of the percolating CNC network

Favier et al., *Polym. Adv. Technol.*, **1995**, 6, 351-355

Good agreement between experimental and predicted data

Strong interactions between CNCs (H-bonding forces) \rightarrow formation of a rigid cellulose CNC network for $\phi_R > \phi_{RC}$

Mechanical percolation effect

- \Rightarrow High reinforcing effect
- Thermal stabilization of the composite modulus

(water evaporation = slow process)

Favier et al., *Polym. Adv. Technol.*, **1995**, 6, 351-355

Percolation Threshold

	CNC			
Source	L (nm)	D (nm)	L/D	$\Phi_{\sf R}$ (vol%)
Cotton	170	15	10	7
Flax	300	20	15	4.6
Sisal	250	4	60	1.1
Luffa	183	5	37	1.8
Sugar beet Pulp	210	5	42	1.3
Palm tree rachis	260	6	43	1.3
Palm tree foliol	180	6	30	2.3
Wheat straw	220	5	45	1.6
Hard wood	200	4	50	1.4
Soft wood	200	4	50	1.4

L

 $\Phi_{\rm R} = \frac{0.7}{L/D}$

Percolation Network

 NR

NR + 8.2 wt% CNC

NR + 16.4 wt% CNC

Stiffness of the Percolating Network

Processing of Nanocomposites

Processing of Nanocomposites

Solvent/wet approach (casting/evaporation)

Preservation of the dispersion state in the liquid medium Limitation of the number of polymer matrices Non-industrial and non-economic

Polymer melt approach (extrusion, injection molding)

Green process

Industrially and economically viable

Hydrophilicity \rightarrow aggregation of cellulosic nanoparticles upon drying

Difficulties for uniform dispersion within the polymer melt

Low thermal stability

Structural integrity of the nanoparticle

Orientation of the nanoparticle

Conclusion

Many possible applications: optical, mechanical, barrier, rheological properties

Sustainability of supply

Challenges: Melt processing of cellulose based nanocomposites

Improvement of nanocomposite properties in moist atmosphere

Grenoble - Capital of the French Alps