

Ionic Liquids: versatility and potential as interfacial agents for designing physicochemical interactions and tailoring morphology and properties of nanofilled polymers

Jannick DUCHET-RUMEAU Sébastien LIVI, Sébastien PRUVOST, JEAN-FRANCOIS GERARD

Ingénierie des Matériaux Polymères Université de Lyon-FRANCE jannick.duchet@insa-lyon.fr

Introduction

Ingénierie en Matériaux Polymères

1.- INTRODUCTION

- Effect 'Nanocomposite' : Why ?
- Ils : New interfacial agents for designing hybrid materials?

2.- IL MODIFIED LAYERED SILICATE-BASED NANOCOMPOSITES

3.- IL-MODIFIED GRAPHENE-BASED NANOCOMPOSITES

- 4.- IL-MODIFIED SILICA –BASED NANOCOMPOSITES
- **5.- CONCLUSION**

Introduction – Nano Effect

Nanomaterials – Nanocomposites What are fundamental mechanisms?

Introduction of organic or inorganic nanofillers in polymers

Synergy due to the nanometric objects (particles, platelets, whiskers, ...):

•Size of nano-objects compared to dimensions of polymer chains

High contact surface/ interfacial areas ('All is interface !')

Changes in polymer chain dynamics from interfacial interactions That must be controlled by the surface treatment (chemistry of interface)

Spatial Structuration of nano-objects

Introduction – Nano Effect

• Size of nanofillers compared to polymer chain dimensions

Large surface-to-volume ratio

JNIVERSITÉ

 \rightarrow sensitivity increased in respect to molecular parameters of matrix

Decrease of particle-particle distance

 \rightarrow increasing of inter-particles interactions

• High contact surface / interfacial areas

Unexpected behaviours from increase of the interfacial areas

Introduction –Nano Effect

High contact surface / interfacial areas

Creation of a high quantity of interfacial areas between polymer and inorganic surface of nanofillers

•*Modification of molecular mobility* (relaxation time)

Glass transition temperature, Tq 'Bound polymer'

strong or weak interactions at interface

 \rightarrow Range of mechanical strength *résistance in temperature (HDT)* → TMS behaviour at high temperature flowing area beyong glass transition

(rubbery flow, liquid flow)

E. Giannelis (2000)

Module

Introduction – Nano effect

•Spatial structuration of nano-objects

* Possibility of nanofillers network formation interactions particule/particule (percolating network)

* Occlusive volume – apparent volume ratio higher than real introduced ratio

Introduction – Nano effect

•Spatial structuration of nano-objects

Structuration/assembling of 3D nanofillers

Tortuosity of medium in order to deviate nanofillers

→Propagation of a crack Surface Creation ⇔ K_{IC}, G_{IC}: Fracture Energy Mechanical Properties

➔Diffusion of small organic molecules (gaz, solvents) Permeability / membranes

→Diffusion of electrical charges Conductivity / dielectrical properties

•Spatial structuration of nano-objects

Compromise between paradoxical properties? Example / mechanical properties Compromise'Toughness-Stiffness' – An answer ?

Exemple: Nanocomposites vs. Microcomposites

Polyurethane matrix

If dispersion is succeeded, 1 hectare of interface can be generated !

Tailoring of physicochemistry interactions at interfaces required

THERMOSTABLE IONIC LIQUIDS : NEW ALTERNATIVE Organic Salts with $T_m < 100^{\circ}C$

- Low vapor pressure
- Not explosive
- Great chemical stability
- Great thermal stability (up to 300°C)
- High ionic conductivity
- Large electrochemical range
- Liquid state on a large temperature range

Tunability of IIs towards the matrix

IONIC LIQUIDS as Interfacial agents able to establish different types of interactions

IONIC INTERACTIONS

$\Pi - \Pi$ INTERACTIONS

COVALENT INTERACTIONS

Yang et al, J. Mater. Chem. 2012, 22, 5666-5675

/Zou, H.; Wu, S.; Shen, J. Chem. Rev. 2008, 108, 3893-3957. // Xie, Y.; Hill, C. a S.; Xiao, Z.; Militz, H.; Mai, C. Compos. Part A Appl. Sci. Manuf. 2010, 41 (7), 806-819.

Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Prog. Polym. Sci. 2013.

1.- INTRODUCTION

- Effect 'Nanocomposite' : Why ?
- Why IIs for designing hybrid materials?

2.- IL MODIFIED LAYERED SILICATE-BASED NANOCOMPOSITES

3.- IL-MODIFIED GRAPHENE-BASED NANOCOMPOSITES

- 4.- IL-MODIFIED SILICA –BASED NANOCOMPOSITES
- **5.- CONCLUSION**

IONIC INTERACTIONS

Layered Silicates (montmorillonite, hectorite, laponite...)

R'''-

Rendering inorganic filler organophilic i.e. compatible with the matrix

Montmorillonite	γpolar	γtotal
	$(mN.m^{-1})$	$(mN.m^{-1})$
MMT-Na ⁺	30	73
MMT-DMDT	9	40
MMT-DMBT	14	49
MMT-P	2	37
MMT-I	1	32
Polyethylene	0	34
[28]		

Modification of surface energy by LIs

- Decrease of surface energy
- Very low non dispersive component
- Very hydrophobic lamellar fillers

Surface energy similar to polyethylene one : better compatibility of IL-modified MMT ?

A key parameter : Surface Energy

S. Livi, J. Duchet-Rumeau, J-F. Gérard, 353
(1), 225-230 (2011).
S. Livi, J. Duchet-Rumeau, T. N. Pham and J-

F. Gérard, *Journal of Colloid and Interface Science*, **354** (2), 555-562 (2011). Burgentzlé et al. J. Coll Interf. Sci. 278, 26-39 (2004)

UNIVERSITÉ De lyon

Significant increase of interlayers distances relevant to polymer chains intercalation

Melt Processing of IL- modified lamellar silicates within PE matrix

Montmorillonite	γ polar	γtotal
	$(mN.m^{-1})$	$(mN.m^{-1})$
MMT-Na ⁺	30	73
MMT-DMDT	9	40
MMT-DMBT	14	49
MMT-P	2	37
MMT-I	1	32
Polyethylene	0	34
[28]		

S. Livi, J. Duchet-Rumeau, T. N. Pham and J-F. Gérard, JCIS, 354 (2), 555-562 (2011).

Melt Processing of Imidazolium modified lamellar silicates within PVDF matrix

S. Livi et al, J. Collloid Interface Sci. (2012)

1.- INTRODUCTION

- Effect 'Nanocomposite' : Why ?
- Why IIs for designing hybrid materials?

2.- IL MODIFIED LAYERED SILICATE-BASED NANOCOMPOSITES

3.- IL-MODIFIED GRAPHENE-BASED NANOCOMPOSITES

4.- IL-MODIFIED SILICA –BASED NANOCOMPOSITES

5.- CONCLUSION

4-IIs as interfacial agents for graphene

UNIVERSITÉ

A routine way to prepare and utilize graphene as nanofillers

Solution Intercalation of Phosphonium modified graphene within PVDF-CTFE matrix

A: ionic interaction B: cation- π interaction C: π - π interaction D: H-bond interaction

1.- INTRODUCTION

- Effect 'Nanocomposite' : Why ?
- Why IIs for designing hybrid materials?

2.- IL MODIFIED LAYERED SILICATE-BASED NANOCOMPOSITES

3.- IL-MODIFIED GRAPHENE-BASED NANOCOMPOSITES

4.- IL-MODIFIED SILICA –BASED NANOCOMPOSITES

5.- CONCLUSION

Better state of dispersion

Better interfacial interactions between Si-g-ImCx and PMMA

UNIVERSITÉ De Lyon

Higher G' moduli in the low w range : sign of a gel like behavior related to the formation of a percolated network of siica

UNIVERSITÉ

de lyon

Longer the alkyl chain length, higher the surface density

interfacial reinforcement of long alkyl chains Plasticizer effect of shorter chains

Synthesis of POSS-ILs based on the trimethylpropylammonium hepta(isooctyl)octasilsesquioxane cation and a variety of anions

Table 3. Conductivity and dielectric constant of POSS-ILs at 1 MHz and 20 $^{\circ}\mathrm{C}.$

	E _r	$\sigma \left[\Omega^{-1} \mathrm{m}^{-1}\right]$
POSS-IL0	2.13	1.65×10^{-6}
POSS-IL1	3.43	1.17×10^{-5}
POSS-IL2	2.59	3.65×10^{-6}
POSS-IL3	2.30	7.30×10^{-6}
POSS-IL4	2.75	3.36×10^{-6}
POSS-IL5	1.43	5.99×10^{-7}

Presence of the POSS moiety :

- Improved thermal properties,
- Control of low room-temperature conductivity dielectric constants

(slight differences originating from the nature of the anions)

• Long alkyl-chain substituents on the POSS core infer hydrophobic character and solution properties comparable to those of classic cationic surfactants

P. Cardiano et al., Eur. J. Inorg. Chem. (2012)

CONCLUSION

ILs : multifunctional additives for structured and functionalized materials

CONCLUSION

STRUCTURING AGENTS

COMPATIBILIZING AGENTS

DISPERSION AIDS

MULTIFUNCTIONAL AGENTS

SURFACE MODIFING AGENT

Nguyen et al, ACS Sustainable Chem. Eng., 2016, 4 (2), 481–490

Let's join the "CNRS National Research Network" GDR

http://www.gdr-lips.fr

