

Ab-initio simulations of metallic clusters

San Sebastian

Madrid

Portuga

Barcelona

P. Koval, F. Marchesin, M. Barbry, J. Aizpurua and D. Sánchez-Portal

←□ → ←□ → ←□ → ←□

Imaginenano2018
Bilbao, Spain, March 13-15 2018 (March 13)
http://www.imaginenano.com/2018

People involved

Federico Marchesin

Daniel Sanchez-Portal

Marc Barbry

Ruben Esteban

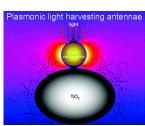
Mattin Urbieta

Nerea Zabala

Javier Aizpurua

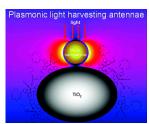
Plasmonics: applications of local field enhancement

Enhancement of efficiency in photo voltaics

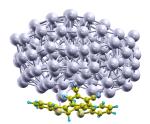


Plasmonics: applications of local field enhancement

Enhancement of efficiency in photo voltaics



Surface-enhanced Raman Spectroscopy SERS/TERS



Classical electrodynamics of continuum media

▶ Formalism of dielectric functions $\varepsilon(\omega, \mathbf{r})$

Continuity of $\phi(\mathbf{r})$ and $\mathbf{D}(\mathbf{r}) = \varepsilon \mathbf{E}(\mathbf{r}) \Rightarrow$

Static resonance condition $\varepsilon_{\text{sphere}} = -2$;

Drude model function $\varepsilon(\omega)=1-rac{\omega_{p}^{2}}{\omega^{2}}\Rightarrow$

$$\omega_{\mathsf{surface}} = \frac{\omega_p}{\sqrt{1+2}}$$

- Works best for macroscopic sizes
- With some care the range of validity can be extended¹
 - Boundary-element method (BEM) for arbitrary shapes
 - ▶ Atoms spheres of Wigner-Seitz radius *r_s* material dependent

¹M. Urbieta, M. Barbry, Y. Zhao, et al., ACS Nano 12, 585-595 (2018)

Classical electrodynamics: out of range

Dielectric function formalism ceases to work at microscale

▶ To understand the dielectric functions we need ab-initio theory 4d-electrons in silver: $\varepsilon(\omega) = \varepsilon_{4d} - \frac{\omega_p^2}{\omega^2} \Rightarrow \omega_{\text{surface}} = \frac{\omega_p}{\sqrt{\varepsilon_{4d} + 2}}$ Size-dependent resonance frequency $\omega_{\text{surface}}(R) \Rightarrow \varepsilon(R, \omega)$???

Classical electrodynamics: out of range

Dielectric function formalism ceases to work at microscale

- ▶ To understand the dielectric functions we need ab-initio theory 4d-electrons in silver: $\varepsilon(\omega) = \varepsilon_{4d} \frac{\omega_p^2}{\omega^2} \Rightarrow \omega_{\text{surface}} = \frac{\omega_p}{\sqrt{\varepsilon_{4d}+2}}$ Size-dependent resonance frequency $\omega_{\text{surface}}(R) \Rightarrow \varepsilon(R, \omega)$???
- ▶ ... the Raman spectroscopy we need atomistic theory
- ▶ ...the effects of temperature we need ab-initio atomistic theory
- TEM experiments we need ab-initio theory

Ab-initio theory

Quantum mechanics

 $\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N)$

Density-functional theory (DFT)

$$E = E[n]$$

$$n(\mathbf{r}) = \int \Psi^*(\mathbf{r}, \mathbf{r}_2 \dots, \mathbf{r}_N) \Psi(\mathbf{r}, \mathbf{r}_2 \dots, \mathbf{r}_N) d\mathbf{r}_2 \dots d\mathbf{r}_N$$

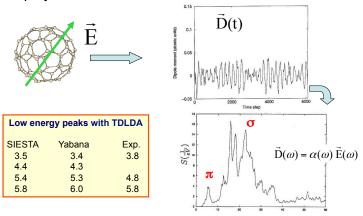
► Kohn-Sham (KS) picture
$$\left(\hat{T} + V_{\mathsf{ext}} + V_{\mathsf{Hxc}}\right) \Psi_n(\mathbf{r}) = E \Psi_n(\mathbf{r})$$

$$n(\mathbf{r}) = \sum_{n \in \mathsf{occ}} \Psi_n^*(\mathbf{r}) \Psi_n(\mathbf{r})$$

- ▶ Time-dependent DFT (TDDFT) in KS $\hat{H}_{KS}\Psi_n(\mathbf{r}) = i\frac{\partial}{\partial t}\Psi_n(\mathbf{r})$
- ightharpoonup Kinetic-energy density functionals T = T[n] would be great, but too inaccurate so far

Ab-initio theory: real-time propagation of wave-packets

A. Tsolakidis, D. Sánchez-Portal, R. M. Martin, PRB(2002), adapting a recipe by Kazuhiro Yabana and George Bertsch. PRB (1996)



RT TDDFT is capable to model a broad range of scenarious, but this is superfluous for spectroscopy

Ab-initio theory: linear response

► Casida equation: exchange/hybrid functionals ©

Ab-initio theory: linear response

- ▶ Casida equation: exchange/hybrid functionals ☺
- ▶ Formalism of linear response functions $\chi(\omega)$: comput. cheap ③

$$\delta n(\mathbf{r},\omega) \equiv \int \chi(\mathbf{r},\mathbf{r}',\omega) \delta V_{\mathrm{ext}}(\mathbf{r}',\omega) d\mathbf{r}', \text{ or } \Rightarrow \chi(\omega) = \frac{\delta n}{\delta V_{\mathrm{ext}}}$$
 $V_{\mathrm{eff}} = V_{\mathrm{ext}} + V_{\mathrm{Hxc}}[n] \Rightarrow \frac{\delta V_{\mathrm{eff}}}{\delta n} = \frac{\delta V_{\mathrm{ext}}}{\delta n} + \frac{\delta V_{\mathrm{Hxc}}[n]}{\delta n}$
 $\chi(\omega) = \chi_0(\omega) + \chi_0(\omega) K \chi(\omega),$

 $\chi_0(\omega) = (f_n - f_m) \frac{\Psi_n(\mathbf{r}) \Psi_m(\mathbf{r}) \Psi_m(\mathbf{r}') \Psi_n(\mathbf{r}')}{\omega - (E_m - E_n)}$

Products of wave-functions appear in $\chi_0(\omega)$ and interaction kernel K is known for semi-local functionals.

Ab-initio theory: linear response

▶ Formalism of linear response functions $\chi(\omega)$: comput. cheap ©

$$\delta n(\mathbf{r},\omega) \equiv \int \chi(\mathbf{r},\mathbf{r}',\omega) \delta V_{\mathrm{ext}}(\mathbf{r}',\omega) dr', \text{ or } \Rightarrow \chi(\omega) = \frac{\delta n}{\delta V_{\mathrm{ext}}}$$
 $V_{\mathrm{eff}} = V_{\mathrm{ext}} + V_{\mathrm{Hxc}}[n] \Rightarrow \frac{\delta V_{\mathrm{eff}}}{\delta n} = \frac{\delta V_{\mathrm{ext}}}{\delta n} + \frac{\delta V_{\mathrm{Hxc}}[n]}{\delta n}$
 $\chi(\omega) = \chi_0(\omega) + \chi_0(\omega) \mathcal{K}\chi(\omega),$

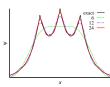
 $\chi_0(\omega) = (f_n - f_m) \frac{\Psi_n(\mathbf{r})\Psi_m(\mathbf{r})\Psi_m(\mathbf{r}')\Psi_n(\mathbf{r}')}{\omega - (F_m - F_m)}$

Products of wave-functions appear in $\chi_0(\omega)$ and interaction kernel K is known for semi-local functionals.

Basis sets

$$\Psi_n(\mathbf{r}) = \sum_a X_a^n f^a(\mathbf{r})$$

Plane-wave (PW) basis sets: $\exp(i\mathbf{G}\mathbf{r})$

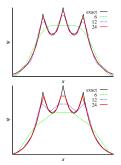


Basis sets

$$\Psi_n(\mathbf{r}) = \sum_a X_a^n f^a(\mathbf{r})$$

Plane-wave (PW) basis sets: $\exp(\mathrm{i} \textbf{\textit{Gr}})$

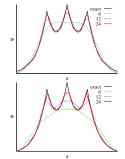
Real-space grids (RSG): $\{r_i\}, i = 1 \dots N$



Basis sets

$$\Psi_n(\mathbf{r}) = \sum_a X_a^n f^a(\mathbf{r})$$

Plane-wave (PW) basis sets: $\exp(i\mathbf{G}\mathbf{r})$



Real-space grids (RSG): $\{ {m r}_i \}, i=1 \dots {m N}$

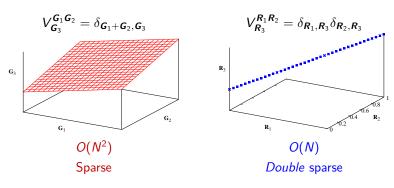
- ▶ Numerical atomic orbitals (NAO): $f^a(r)Y_{lm}(r)$
 - ▶ Parsimonious for atomic systems
 - Need density-fitting basis

Product basis: PW vs RSG

For NAO $f^a(\mathbf{r})$ we need an auxiliary basis $f^a(\mathbf{r})f^b(\mathbf{r}) = V_\mu^{ab}F^\mu(\mathbf{r})$

Product basis: PW vs RSG

For NAO $f^a(\mathbf{r})$ we need an auxiliary basis $f^a(\mathbf{r})f^b(\mathbf{r})=V_\mu^{ab}F^\mu(\mathbf{r})$

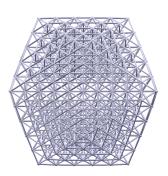


⇒ Potential advantage of localized basis sets

DFT with SIESTA: NAO in action

Open-source²

- ▶ DFT with NAO
- ► Energies & Forces ⇒ Molec. dyn.



²https://launchpad.net/siesta

³http://www.simune.eu

DFT with SIESTA: NAO in action

Open-source²

- ▶ DFT with NAO
- Energies & Forces ⇒ Molec. dyn.
- ► Commercial support for industry partners³

Industrial Forum Imaginenano2018 Thu. 11:30-13:30



²https://launchpad.net/siesta

³http://www.simune.eu

Iterative computation of induced density

▶ Induced density $\delta n(\omega)$ due to an external perturbation $\delta V^{\rm ext}(\omega)$

$$\delta n(\omega) = \chi_0(\omega) \delta V^{\text{eff}}(\omega)$$

Iterative computation of induced density

▶ Induced density $\delta n(\omega)$ due to an external perturbation $\delta V^{\text{ext}}(\omega)$

$$\delta n(\omega) = \chi_0(\omega) \delta V^{\text{eff}}(\omega)$$

▶ The effective perturbation $\delta V^{\rm eff}(\omega)$ obeys SLE

$$(\delta - K\chi_0(\omega))\delta V^{\text{eff}}(\omega) = \delta V^{\text{ext}}(\omega)$$

Iterative computation of induced density

▶ Induced density $\delta n(\omega)$ due to an external perturbation $\delta V^{\text{ext}}(\omega)$

$$\delta n(\omega) = \chi_0(\omega) \delta V^{\text{eff}}(\omega)$$

▶ The effective perturbation $\delta V^{\text{eff}}(\omega)$ obeys SLE

$$(\delta - K\chi_0(\omega))\delta V^{\text{eff}}(\omega) = \delta V^{\text{ext}}(\omega)$$

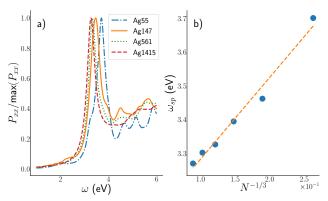
▶ We solve the SLE above with Krylov subspace methods

$$\chi^0_{\mu\nu}z^{\nu} = V^{ab}_{\mu} X^n_a X^m_b X^m_c V^{cd}_{\nu}z^{\nu} X^n_d$$

▶ $O(N^3)$ operations or less, where N is number of atoms

Silver clusters with PySCF-NAO

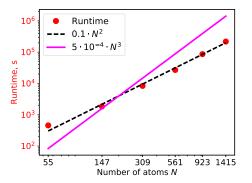
► Open-source, Python-based implementation https://github.com/cfm-mpc/pyscf



▶ The plasmonic resonance of silver clusters blue-shifts for smaller sizes

Silver clusters with PySCF-NAO

► Open-source, Python-based implementation https://github.com/cfm-mpc/pyscf

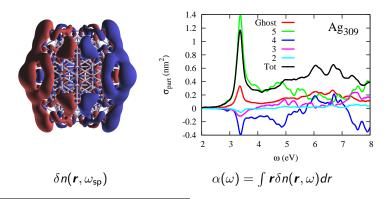


► The runtime on 12 cores of Intel[®] Xeon[®] Processor E5-2680 v3

Silver clusters analysis

We can split response in multiple ways: including atomic layer's contributions⁴

 $\delta n({m r},\omega) = \delta n_{\mu}(\omega) F^{\mu}({m r})$ and $F^{\mu}({m r})$ is the atom-centered product basis

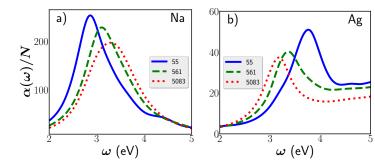


⁴J. Phys.: Condens. Matter 28 (2016) 214001

Size/material dependence: Na vs Ag

Being ab-initio theory TDDFT allows to see straight away

- ▶ dependence on the size N number of atoms
- ▶ ... material: Na 3s; Ag 4d¹⁰ 5s

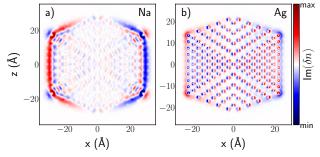


▶ Why that? 🕏

Size/material dependence: reason

Reason for the opposite size dispersion

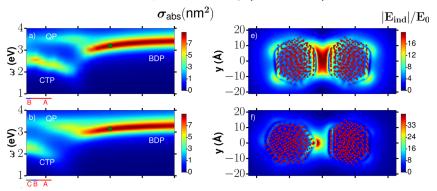
- Without the Coulomb interaction Na and Ag clusters blue shift quantum confinement
- Without d-electrons Ag dispersion flattens: screening



▶ Dependence on the shape 🕞

Shape dependence for a plasmonic cavity

Na₃₈₀ dimer is a model of plasmonic cavity (EM antenna)⁵



⁵Barbry *etal* Nano Lett. 15 (2015) 3410

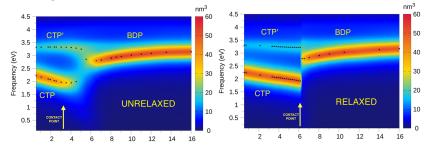
Relaxations in the Na₃₈₀ cavity

What happens if we allow the atoms to move?

Play movie

Effect of relaxations on polarizability

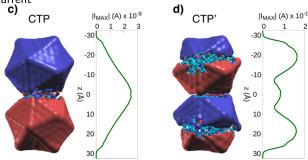
Since we use atomistic theory, we can model inelastic microscopic rearrangements $^{\rm 6}$



⁶FM, PK, MB, JA, DSP, ACS Photonics **3** (2016) 269

Induced density and current at different frequencies

Because we have the induced density in real space, it is also possible to find the induced current

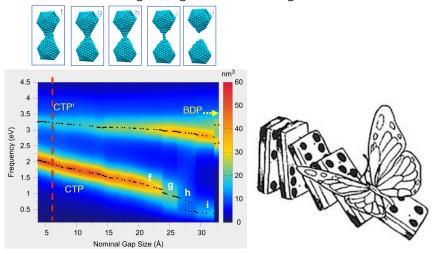


Imaginary part of the induced density and the corresponding modulus of the electron current flowing through the middle of the dimer $2 \times Na_{380}^{7}$

⁷FM, PK, MB, JA, DSP, *ACS Photonics* **3** (2016) 269

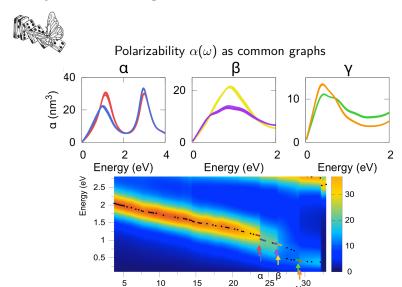
Butterfly effect at large strain

Small action leads to large changes when rectracting⁸



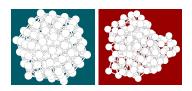
⁸FM, PK, MB, JA, DSP, ACS Photonics 3 (2016) 269

Butterfly effect at large strain

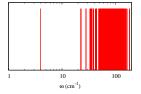


Nominal Gap Size (Å)

Semi-empirical molecular dynamics (MD) for Ag₁₄₇



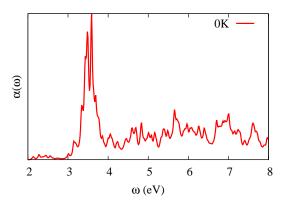
- Atomistic Simulation Environment (ASE) to organize SEMD
- Langevin dynamics for $T_{\text{ion}} = 300$, 600 and 900 K
- Atomistic effective potentials used⁹



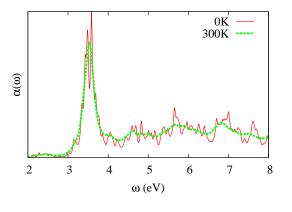
Vibration spectrum of Ag₁₄₇

- Vibration spectrum was computed with VIBRA utility
- Vibration spectrum was used to justify the MD parameters Δt and T_{total}
- ▶ 800 snapshots in TDDFT 🕏

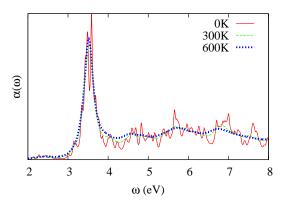
⁹Hale, Wong, Zimmerman and Zhou, *Modelling Simul. Mater. Sci. Eng.* 21 (2013) 045005



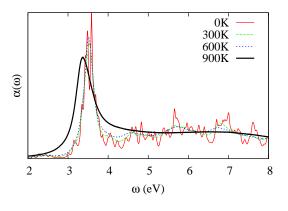
Icosahedral modes at 0K



- ► Icosahedral modes at 0K
- ▶ merge at room temp 300K

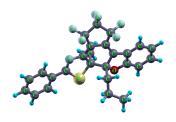


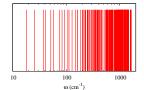
- ► Icosahedral modes at 0K
- merge at room temp 300K
- and stay unaltered between 300 and 600K



- ► Icosahedral modes at 0K
- merge at room temp 300K
- and stay unaltered between 300 and 600K
- Melting affects the optical polarizability

AIMD for a diarylethene as a comparison





Vibration spectrum

- ► DFT+MD package SIESTA¹⁰
- Nosé thermostat $T_{\text{ion}} = 100$, 300 K
- ► PBE GGA

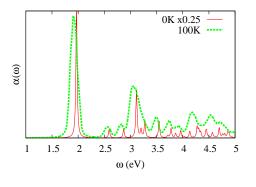
- PySCF-NAO: optical gap 1.97 eV
- PySCF-GTO: optical gap PBE 2.03 eV, B3LYP 2.33 eV
- VIBRAtion spectrum was used to justify the MD parameters Δt and T_{total}
- ▶ 800 snapshots in TDDFT 🕏

¹⁰José M Soler et al 2002 J. Phys.: Condens. Matter 14 2745

AIMD+TDDFT for a diarylethene compound

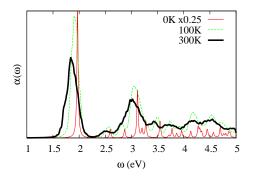


AIMD+TDDFT for a diarylethene compound



- HOMO-LUMO well-separated
- ► In contrast to Ag₁₄₇, the resonance frequencies are affected at low $T_{\text{ion}} = 100K$

AIMD+TDDFT for a diarylethene compound



- HOMO-LUMO well-separated
- ► In contrast to Ag₁₄₇, the resonance frequencies are affected at low $T_{\rm ion} = 100 K$
- Similarly to Ag_{147} , the resonance frequencies ω_i are red-shifted while $T_{\rm ion}$

Valence electron energy loss spectra

Other stimuli is well possible¹¹

$$\delta V_{ ext{ext}}(m{r},\omega) = \int \mathrm{e}^{\mathrm{i}\omega t} |m{r} - m{r}_{ ext{probe}}(t)|^{-1} dt$$

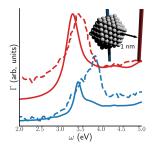


FIG. 4. Experimental [23] (dashed lines) and ab initio (full lines) EELS of silver icosahedral cluster. Two distincts trajectories of the electron beam are represented, one crossing the cluster at its center (blue lines) and the other near the surface of the cluster (red lines). The cluster geometry used for the calculation together with the beam trajectories are represented in the figure. The colors of the beams are corresponding to the colors of the lines.

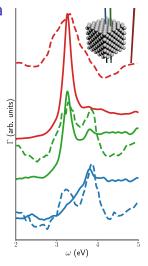


FIG. 5. Experimental [22] (dashed lines) and ab initio (full lines) EELS for a silver cube composed of 500 atoms and presenting a fcc lattice. Three distincts trajectories of the electron beam are represented, one crossing the cluster at its cen-

¹¹MB, PK, DSP, Ab-initio theory of EELS, in preparation (2018)

Conclusions & Outlook

- ▶ Linear response iterative TDDFT is useful for plasmonics
- ► PySCF-NAO available online already
- ▶ Atomistic approach allows to address a wealth of phenomena

Conclusions & Outlook

- ▶ Linear response iterative TDDFT is useful for plasmonics
- ► PySCF-NAO available online already
- Atomistic approach allows to address a wealth of phenomena

Underway

- ▶ Other methods with Fock-like operators: *GW*/BSE
- ▶ Other observables: EELS and Raman

Conclusions & Outlook

- ▶ Linear response iterative TDDFT is useful for plasmonics
- ▶ PySCF-NAO available online already
- Atomistic approach allows to address a wealth of phenomena

Underway

- ▶ Other methods with Fock-like operators: *GW*/BSE
- ▶ Other observables: EELS and Raman

Thank you for your kind attention!