Plasmonic nanoantennas for nanometer, picosecond control of VO₂ phase-transition

N. Zabala^{1,2}

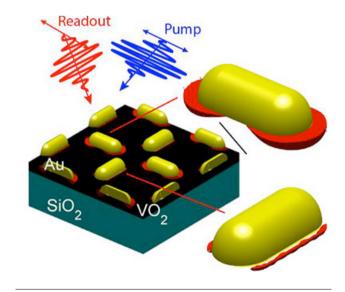
L. Bergamini^{1,2}, Y. Wang³ J.M. Gaskell⁴, C.H. de Groot³, D. W. Sheel⁴, J. Aizpurua² and Otto. L. Muskens³

¹Electricity and Electronics, FCT-ZTF, UPV/EHU, 48080 Bilbao, Spain

²CFM, CSIC-UPV/EHU and DIPC, 20018, Donostia, Spain

³Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK ⁴Materials and Physics Research Centre, University of Salford, Manchester, UK

nerea.zabala@ehu.eus


Efficient and reversible switching of plasmonic modes at Vis and NIR wavelengths is one of the key desirable properties for optoelectronic devices. Phase-transition materials offer technologically relevant opportunities by notable changes providing dielectric response [1]. Vanadium dioxide (VO₂) is characterized by an insulator-tometal transition at around 68°C [2]. In this work, we show how resonant pumping allows to use Au nanoantennas (NAs) fabricated on top of high-quality VO₂ films as a catalyzer for achieving ultrafast, highly localized VO₂ phase-transition [3]. Optical experiments demonstrate picosecond alloptical switching of the local phase transition in plasmonic NA-VO2 hybrids, exploiting strong resonant field enhancement and selective optical pumping in plasmonic hot-spots (Figure 1). The antena-assisted pumping mechanism is confirmed by numerical model calculations of the resonant, antenna-mediated local heating on a picosecond scale. Moreover,

it is demonstrated that the phase transition mediated by local pumping of a plasmon resonance does not influence perpendicular of NA resonance а positioned less than 100 nm away from the excited antenna. The NA-VO₂ hybrids enable new directions in all-optical ultrafast switching at picoJoule energy levels, and pave the way for plasmonic memristor-type devices exploiting nanoscale thermal memory.

References

- [1] Z. Yang and S. Ramanathan, IEEE Phot. J 7 (2015) 0700305
- [2] M. M. Qazilbash et al., Science 318 (2007) 1750.
- [3] O. L Muskens et al., Light Sci Appl. 5, (2016) e16173

Figures

Figure 1: Pump-probe scheme of NA-VO₂ hybrids and simulated phase-switched hot-spots (red regions).