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Abstract  
 
Terahertz (THz) fields are widely applied for 
sensing, communication and quality 
control. In future applications, they could 
be efficiently confined, enhanced and 
manipulated through the excitation of 
graphene plasmons. Graphene plasmons 
possess ultra-strong field confinement, 
enabling new classes of devices for deep 
subwavelength metamaterials, single-
photon nonlinearities, extraordinarily strong 
light-matter interactions and nano-
optoelectronic switches.  
We theoretically investigate the properties 
of graphene plasmons in the bulk and at 
the edge. For bulk modes, we find that at 
room temperature the scattering against 
graphene's acoustic phonons is the 
dominant limiting factor for hBN/G/hBN 
stacks. At the edge, the presence of strain 
fields induces novel charged counter-
propagating acoustic edge modes. In the 
limit of large pseudomagnetic fields, each 
of them involves oscillations of only one of 
the two electronic components.  
Furthermore, we show that new chiral 
valley-polarized second-sound collective 
modes can propagate along the edges of 
novel materials with non-trivial Berry 
curvatures. 
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Figure 1: SNOM excitation of graphene 
plasmons and their lateral field confinement 
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Figure 4: Plasmon damping mechanisms. a, The in-
verse damping ratio as a function of carrier density at a
photon energy of 116 meV. b, The inverse damping ratio
as a function of excitation frequency at a carrier density of
7.4 ⇥ 1012 cm�2. Both a and b also show the theoretical in-
verse damping ratios due to graphene thermal phonons (blue
dashed curve), hypothetical charge impurities at concentration
nimp = 1.9 ⇥ 1011 cm�2 (green dash-dotted curve), dielectric
losses of h-BN (yellow dashed curve) and the combination of
graphene thermal phonons and dielectric losses of h-BN (red
curve).

e↵ective electron scattering time for plasmons can di↵er
from the transport scattering time.8,22

Interestingly, we find experimentally that plasmon
damping is not a↵ected by the carrier density. By com-
paring our data with the calculated inverse damping ra-
tios, we find that impurity scattering does not play a role
for plasmon damping, because it would lead to strongly
reduced damping for increasing ns, due to increasing
electrostatic screening8 (green dashed dotted curve in
Fig. 4). In contrast, plasmon damping by intrinsic ther-
mal phonons22 shows a much weaker dependence on ns

(dashed blue curve in Fig. 4). From quantitative compar-
ison, we find that (without fitting parameters) this intrin-
sic damping mechanism accounts for approximately half
the observed damping and thus we conclude that this is
the dominant intrinsic damping mechanism. Extensive
details on the calculations of plasmon damping due to
thermal phonon scattering are presented in Ref. 22.

Electronic damping alone cannot explain the observed
dependences, however dielectric losses provide an addi-
tional damping pathway. In particular, the dielectric
losses of the h-BN encapsulating the graphene may give
a significant contribution (yellow dashed curve in Fig. 4).
The combination of thermal phonon damping and dielec-
tric losses22 is in good agreement with our measurements
(red curve in Fig. 4). The dielectric losses used in our
model are consistent with recent measurements of thin
(<200 nm) h-BN flakes.15 Although the plasmon damp-
ing is a↵ected by the dielectric losses, this work provides
strong evidence of the intrinsic limit graphene plasmon
inverse damping ratio of 40–70. This provides a upper

bound on Re� ⇠ 0.05⇡e2/2h at room temperature, much
smaller than previously reported.25,26

To conclude, we have demonstrated h-BN to be an
exceptional environment for graphene plasmons, yielding
high confinement and low levels of damping. In order
to further reduce damping and reach the ultimate limit
of plasmon propagation at room temperature—electron
scattering by thermal phonons22—it will be necessary to
reduce dielectric losses. The presented nano-photonics
device paves the way towards single-photon nonlinearities
with graphene plasmons,3 and provide an ideal platform
for many applications where tunability is crucial, such as
routing of plasmons27 and plasmon lenses.7,28

METHODS

The device geometry as well as the edge contacts were de-
fined using electron beam lithography and dry etching, in the
method of Ref. 11. The backgate capacitance density was es-
timated to be 6.7⇥1010 e cm�2 V�1, where e is the elementary
charge.

The s-SNOM used was a NeaSNOM from Neaspec GmbH,
equipped with a CO2 laser and cryogenic HgCdTe detector.
The probes were commercially-available metallized atomic
force microscopy probes with an apex radius of approximately
25 nm. The tip height was modulated at a frequency of
approximately 250 kHz with amplitude of 60–80 nm. ⇠opt
was obtained from the third harmonic interferometric pseudo-
heterodyne signal.5,6 For simplicity most figures only show
Re ⇠opt, however similar information appears in Im ⇠opt as de-
scribed by equation (1); all analysis (background subtraction,
fitting, etc.) was performed simultaneously on Re ⇠opt and
Im ⇠opt. The location of the etched graphene edge (x = 0)
was determined from the simultaneously-measured topogra-
phy.

The theoretical model of plasmon modes was calculated
in a classical electromagnetic transfer matrix method, with
a thin film stack of vacuum–SiO2(285 nm)–h-BN(46 nm)–
graphene–h-BN(7 nm)–vacuum. Thin film and nonlocal ef-
fects reduce Re qp by ⇠ 5–20% compared to infinite dielectric
Drude model calculation (see Supplement). The zero tem-
perature random phase approximation (RPA) result29–31 was
used for the graphene nonlocal conductivity �(k,!). The per-
mittivity model of Ref. 32 was used for the h-BN films, modi-
fied to include dielectric losses based on Ref. 15. The damping
e↵ect from dielectric losses shown in Fig 4 was also calculated
in this method, taking phonon linewidths of 6.5 meV in-plane
and 1.9 meV out-of-plane in the terminology of Ref. 15, and
their origin is discussed further in the Supplement. In Fig. 2c
and Fig. 2d, the color quantity plotted is the imaginary part
of the reflection coe�cient of evanescent waves, evaluated at
the top h-BN surface. In these figures the damping has been
modified (e.g., reduced dielectric loss) to enhance the visi-
bility of modes—this does not significantly modify the mode
locations.

⇤ These authors contributed equally † frank.koppens@icfo.es

 
 

Figure 2: A comparison between experimental 
and theoretical damping ratios 
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FIG. 1. Panel a) a schematic view of the theoretical model:
the two electronic components experience opposite pseudo-
magnetic fields. In the case of graphene this is achieved by
strain, which acts as an e↵ective magnetic field with oppo-
site signs for the electrons in the two valleys (K and K0).
Two counter-propagating plasmons appear at the edge of the
system, each of them mainly due to density oscillations in
a specific valley. Panel b) the dispersion of edge collective
modes in units of the cyclotron frequency !c, as a func-
tion of the momentum q measured in units of qc = (kF`2)�1

[` =
p

c/(eB) is the magnetic length]. We set the filling factor
⌫ = 1 (vp ' 1.2vF). Each electronic component, depending
on the range of frequencies explored, can support up to two
charged collective modes, one of which lives inside the gap
of the particle-hole continuum (shaded region). The second
mode is always gapped, with zero-momentum energy ~!c.

are actually attainable in experiments.
A similar situation occurs when electrons travel in

proximity to a Skyrmion crystal realized, e.g., in a chiral
magnet. The complex, topological magnetic structure is
responsible for the emergence of an “e↵ective electrody-
namics” determined by the Berry phases accumulated by
the electrons moving in it.29 Traveling in such a structure
the electron spin tends to adiabatically align with the di-
rection of the magnetization. At suitable electronic den-
sities, spin-up electrons accumulate a Berry phase which
has a sign opposite to that of spin-down electrons.30 As
a consequence, the two spin populations “skew” in op-
posite directions. In this case the pseudomagnetic field
(⇠ 2.5 T in MnSi29) originates from the Berry phase
accumulated by electrons passing through the complex
magnetic structure: this system o↵ers therefore a beau-
tiful model to study the impact of the (real-space) Berry
phase on collective modes.

In this letter we solve the edge-plasmon problem in a
two-component 2D electronic system subject to a pseudo-
magnetic field. We solve the full Wiener-Hopf problem31

defined by constitutive equations and electrostatics, and
we provide a comparison with an approximate solution à
la Fetter.

II. THE MODEL

For the sake of definiteness we consider a strained
graphene sheet which occupies the half plane x < 0, z = 0
We assume that the presence of the edge does not a↵ect
the low-energy physics of the system, and that the elec-

FIG. 2. Panel a) the sound velocity of the acoustic edge
pseudo-magnetoplasmon vp = !p(q)/q in units of the Fermi
velocity, plotted as a function of the filling factor ⌫. The
dots represent the Wiener-Hopf result, while the dashed line
is the solution approximated á-la Fetter [see Eq. (14)]. We
cut-o↵ the logarithmic divergence of vp by setting q̄ = 0.01.
Panel b) the degree of valley polarization of the right-moving
edge pseudo-magnetoplasmon, given by |�nK/n̄di↵ | = (vp +
s)/(2vp) and |�nK0/n̄di↵ | = (vp �s)/(2vp). Note that at large
magnetic field (⌫ = 1), 80% of the contribution to density
oscillations comes from electrons in valley K, and only 20%
from those living around the K0 point. For the left-moving
edge plasmon an analogous figure can be drawn with valleys
K and K0 interchanged.

trons can be described by the massless Dirac fermion
Hamiltonian11–13

H0 = vF
X

k,↵,�

 ̂†
k,↵(k + A) · �↵� ̂k,� , (1)

where  ̂†
k,↵ ( ̂k,↵) creates (destroys) a particle with mo-

mentum k and pseudospin ↵, vF is the Fermi veloc-
ity, Ax = ⇠�(uxx � uyy)/a and Ay = �2⇠�uxy/a are
the two component of the pseudomagnetic vector po-
tential generated by the strain tensor uij(r) [here � =
�@ ln(t)/@ ln(a) ' 2, a = 1.4 Å, ⇠ is a numerical constant
of order one].25–27 In what follows we assume that the
shape of the applied strain is such that r ⇥ A = ±Bẑ,
where the pseudomagnetic field B is constant, while the
plus (minus) sign applies to electrons in valley K (K 0).
Even though the strain field must have a trigonal symme-
try to induce a constant pseudomagnetic field,25–27 we as-
sume that the curvature of the edge is negligible, and we
treat it as a straight line. We neglect inter-valley scatter-
ing, assume graphene to be in the Fermi-liquid regime,22

and we study the electronic transport by means of lin-
earized hydrodynamic equations.32–34 The electron den-

 
 

 

Figure 3: Edge pseudo-magnetoplasmons in the 
presence of strain fields. 
 

 

 

 

 


