# Size-Effect on Superelasticity at Nano-scale in Shape Memory Alloys for Potential Applications in MEMS

#### Jose M. San Juan

J.F. Gómez-Cortés, V. Fuster, I. López-Ferreño, J. Hernández-Saz, S.I. Molina, A. Chuvilin, M.L. Nó

Universidad del País Vasco, UPV/EHU, Fac. Ciencia y Tecnología, Dpt. Fisica de la Materia Condensada, Apdo 644 - Bilbao, Spain.

### <u>jose.sanjuan@ehu.es</u>

Shape Memory Alloys exhibit a superelastic stress-induced phase transformation with a high displacement actuation, which are promising for applications in Micro Electromechanical Systems (MEMS). Previous works demonstrate a completely reversible and reproducible behaviour at nanoscale [1,2], even for thousands of cycles [3]. However, some fundamental aspects at nanoscale remain unclear, in particular whether the critical stress for superelasticity exhibits a sizeeffect similar to that observed in confined plasticity. Our results provide the evidence of a strong size-effect on the critical stress that induce such phase transformation [4]. This has been observed in pillars, milled by FIB in single crystal slides from Cu-Al-Ni and other SMA, from 2  $\mu$ m to 260 nm in diameter. The critical stress for superelasticity has been measured by nano-compression tests. A power-law size dependence of n=-2 has been determined for the superelasticity at nanoscale. Our observations are explained through an atomistic model, involving the atomic lattice shearing triggered by the elastic strain during homogeneous martensitic transformation.

### References

- [1] J. San Juan, M.L. Nó, C.A. Schuh, Advanced Materials, 20 (2008) 272
- [2] J. San Juan, M.L. Nó, C.A. Schuh, Nature Nanotechnology 4 (2009) 415
- [3] J. San Juan, J.F. Gómez-Cortés, G.A. López, C. Jiao, M.L. Nó, Appl. Phys. Letters, 104 (2014) 011901

 [4] J.F. Gómez-Cortés, M.L. Nó, I. López-Ferreño, J. Hernández-Saz, S.I. Molina, A. Chuvilin, J.M. San Juan, Nature Nanotechnology, 12 (2017) 790

## Figures







Figure 2: Size-effect measured on the critical stress for superelasticity, versus pillar diameter, and the prediction of the proposed model [4].