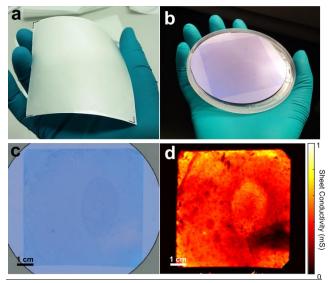
# Repeatable and non-destructive transfer of largearea graphene onto arbitrary substrates

## **Abhay Shivayogimath**

Patrick R. Whelan, David Mackenzie, Bjarke Jessen, Birong Luo, Peter Bøggild, Timothy J. Booth

DTU Nanotech, Ørsteds Plads, Kgs. Lyngby 2800, Denmark.


#### abshi@nanotech.dtu.dk

Synthesis of graphene by chemical vapour deposition (CVD) on commerciallyavailable copper foils [1] is a promising and economical route towards producing high quality, continuous sheets of graphene, and is being rapidly scaled to industrial volumes of production [2]. However, transferring such large quantities graphene onto target substrates in a reproducible manner accounts significant portion of the production costs [3]. Here, we demonstrate a simple method for transferring large areas of graphene arbitrary surfaces usina commercially available polymer foil as a carrier substrate. The method provides a technique non-destructive to transfer graphene that is also economical, reproducible, and scalable - we have demonstrated graphene transfers at scales of up to A4 sheets of paper – and can also be used to transfer hexagonal boron nitride from various catalyst substrates.

### References

- [1] X. Li, et al., Science, **324** (2009),pp. 1312-1314.
- [2] X. Xiao, Y. Li, and Z.Liu, Nature Materials,15 (2016), pp. 697-698.
- [3] Y. Zhu, et al., National Science Review,0 (2017), pp. 1-12.

#### **Figures**



**Figure 1:** (a) Photograph of 10 cm x 10 cm polymer carrier foil with graphene transferred on top, (b) photograph of graphene in (a) transferred onto a 4'' 90 nm SiO<sub>2</sub>/Si wafer, (c) optical micrograph and (d) terahertz timedomain spectroscopy map of sheet conductance of transferred film in (b).