Dirac Fermion Reflector as a Scattering Length Meter

Holger Graef^{1,2}

M. Rosticher¹, Q. Wilmart¹, L. Banszerus³, C. Stampfer³, K. Watanabe⁴, T. Taniguchi⁴, E. Bocquillon¹, G. Fève¹, J.M. Berroir¹, E.H.T. Teo² and B. Plaçais¹

Laboratoire Pierre Aigrain, ENS, Paris, France
Nanyang Technological University, Singapore
Institute of Physics A, RWTH Aachen, Germany
NIMS, Tsukuba, Japan

holger.graef@lpa.ens.fr

Electron propagation in ballistic graphene bears strong analogies with optics, with the Fermi energy as the optical index and p-n junctions acting as dioptres [1,2]. Using nano-patterned bottom gates (Fig. 1) and h-BN encapsulated graphene, we create a prism-shaped doping profile acting as a Dirac fermion (DF) reflector.

We demonstrate the reflection effect and the full tunability of the DF optical index in agreement with a scattering model (Fig. 1). The DF-reflector operates at large negative gate voltage (V_{g1}) where the DFR resistance saturates according to the finite scattering length.

The DFR device is a sensitive meter of scattering length in the range 0.6-6 μ m. It is used in Fig. 2 to measure the phonon scattering length in good agreement with theory.

References

- Wilmart, Berada et al., 2D Mat., 1 (2014) 011006
- [2] Morikawa, Wilmart et al., Semicond. Sci. Technol., 32 (2017) 045010

Figures

Figure 1: Top: Illustration of the Dirac Fermion Reflector. Left: Device resistance as a function of V_{g1} for various V_{g2} . The red box indicates the operation regime of the reflector. Right: Simulation taking into account scattering lengths ranging from 0.7 to 2.8 µm. We also show the case of no scattering and of a rectangular gate (blue and black dashed lines, respectively).

Figure 3: Left: Characterising the Dirac Fermion Reflector at various temperatures (V_{g2} =0.3 V). At low temperatures, resistance oscillates as a signature of coherent DF optics. As we increase the temperature, we see the plateau resistance decrease, i.e. the residual transmission (*right*) increases steeply.